SCES017E - JULY 1995 - REVISED FEBRUARY 1999

 Member of the Texas Instruments Widebus[™] Family 	DGG OR DL PACKAGE (TOP VIEW)	
 EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process 	OEA [1 56] OEB LE1B [2 55] CLKENA2	0
ESD Protection Exceeds 2000 V Per	2B3 3 54 2B4	•
MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)	GND 4 53 GND	
 Latch-Up Performance Exceeds 250 mA Per 	2B2 5 52 2B5 2B1 6 51 2B6	
JESD 17	V_{CC} $\begin{bmatrix} 7 & 50 \end{bmatrix} V_{CC}$	
 Bus Hold on Data Inputs Eliminates the 	A1 🛛 8 49 🗋 2B7	
Need for External Pullup/Pulldown	A2 9 48 2B8	
Resistors	A3 [10 47] 2B9 GND [11 46] GND	
 Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink 	A4 12 45 2B10	
Small-Outline (DGG) Packages	A5 [13 44] 2B11	
o	A6 🛛 14 43 🗍 2B12	
description	A7 🛛 15 42 🗋 1B12	
This 12-bit to 24-bit bus exchanger is designed for	A8 16 41 1B11	
1.65-V to 3.6-V V_{CC} operation.	A9 [] 17 40 [] 1B10 GND [] 18 39 [] GND	
The SN74ALVCH16271 is intended for	A10 [19 38] 1B9	
applications in which two separate data paths	A11 20 37 188	
must be multiplexed onto, or demultiplexed from,	A12 21 36 1B7	
a single data path. This device is particularly	V _{CC} 22 35 V _{CC}	
suitable as an interface between conventional	1B1 23 34 1B6	
DRAMs and high-speed microprocessors.	1B2 24 33 1B5 GND 25 32 GND	
A data is stored in the internal A-to-B registers on	1B3 26 31 1B4	
the low-to-high transition of the clock (CLK) input,	LE2B [27 30] CLKENA1	-
provided that the clock-enable (CLKENA) inputs are low. Proper control of these inputs allows two	SEL 28 29 CLK	

Transparent latches in the B-to-A path allow asynchronous operation to maximize memory access throughput. These latches transfer data when the latch-enable (\overline{LE}) inputs are low. The select (\overline{SEL}) line selects 1B or 2B data for the A outputs. Data flow is controlled by the active-low output enables (\overline{OEA} , \overline{OEB}).

To ensure the high-impedance state during power up or power down, the output enables should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16271 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

sequential 12-bit words to be presented as a

24-bit word on the B port.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74ALVCH16271 12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER WITH 3-STATE OUTPUTS SCES017E – JULY 1995 – REVISED FEBRUARY 1999

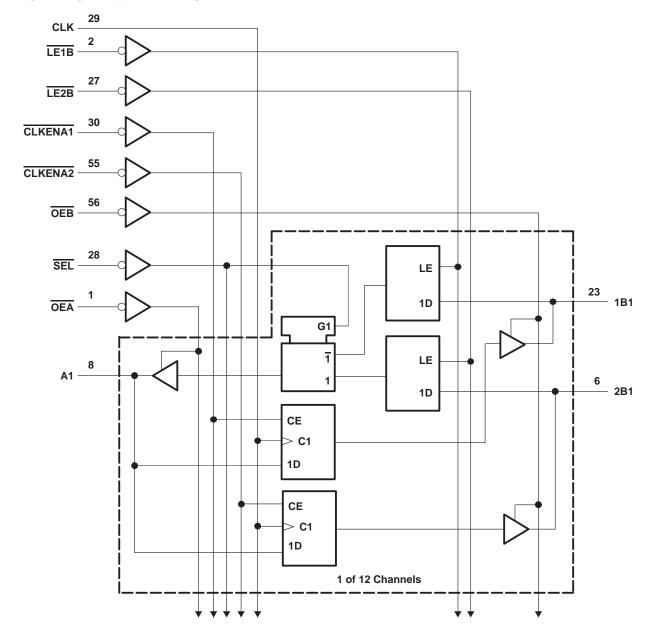
Function Tables

OUTPUT ENABLE

INP	UTS	OUTPUTS				
OEA	OEB	А	1B, 2B			
Н	Н	Z	Z			
Н	L	Z	Active			
L	Н	Active	Z			
L	L	Active	Active			

A-TO-B STORAGE ($\overline{OEB} = L$)

	INPUTS			OUTPUTS		
CLKENA1	CLKENA2	CLK	Α	1B	2B	
Н	Н	Х	Х	1B0†	2B0†	
L	Х	\uparrow	L	L	Х	
L	Х	\uparrow	Н	н	х	
Х	L	\uparrow	L	Х	L	
Х	L	\uparrow	Н	A ₀	Н	


B-TO-A STORAGE (OEA = L)

	INP	UTS	OUTPUT	
LE	SEL	1B	2B	A
Н	Х	Х	Х	A0 [†]
н	Х	Х	Х	A ₀ † A ₀ †
L	Н	L	Х	L
L	Н	Н	Х	Н
L	L	Х	L	L
L	L	Х	Н	Н

[†] Output level before the indicated steady-state input conditions were established

SN74ALVCH16271 **12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER** WITH 3-STATE OUTPUTS SCES017E – JULY 1995 – REVISED FEBRUARY 1999

logic diagram (positive logic)

SN74ALVCH16271 12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER WITH 3-STATE OUTPUTS SCES017E – JULY 1995 – REVISED FEBRUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_{I} : Except I/O ports (see Note 1) I/O ports (see Notes 1 and 2) Output voltage range, V_{O} (see Notes 1 and 2) Input clamp current, I_{IK} ($V_{I} < 0$) Output clamp current, I_{OK} ($V_{O} < 0$) Continuous output current, I_{O} Continuous current through each V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 3): DGG package	$\begin{array}{c} -0.5 \ \mbox{V to } 4.6 \ \mbox{V} \\ -0.5 \ \mbox{V to } \ \mbox{V}_{CC} + 0.5 \ \mbox{V} \\ -0.5 \ \mbox{V to } \ \mbox{V}_{CC} + 0.5 \ \mbox{V} \\ -50 \ \mbox{mA} \\ -50 \ \mbox{mA} \\ \pm 50 \ \mbox{mA} \\ -100 \ \mbox{mA} \\ 81^{\circ}\ \mbox{C/W} \end{array}$
Package thermal impedance, θ _{JA} (see Note 3): DGG package DL package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
	/IH High-level input voltage V/ /IL Low-level input voltage V/ /IL Input voltage V/ /1 Input voltage V/ /O Output voltage V/ /OH High-level output current V/ OL Low-level output current V/ V/ V/ V/ V/ V/ V/ V/ V/ V/ OL Low-level output current V/ V/ V/ V/ V/ V/ V/ V/ V/ V/	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
VIL	VIH High-level input voltage VIL Low-level input voltage VI Input voltage VO Output voltage IOH High-level output current IOL Low-level output current Δt/Δv Input transition rise or fall rate	V_{CC} = 2.3 V to 2.7 V		0.7	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8	
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
		V _{CC} = 1.65 V		-4	
lau	High lovel output ourrest	$V_{CC} = 2.3 V$		-12	mA
$ \begin{array}{c c} \mbox{V}_{\mbox{IH}} & \mbox{High-level input voltage} & \begin{tabular}{ c c c c c c } \label{eq:VCC} & \mbox{I.65 V to 1.95 V} & \mbox{I.65 V V}_{\mbox{CC}} \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.7 \ V \ to 3.6 \ V & 2 \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 2.7 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \ to 3.6 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 2.3 \ V \\ \hline \end{tabular} V_{\mbox{IC}} = 3 \ V \\ \hline \end{tabular} V_{\mbox$	-12	mA			
		$\frac{\bigvee_{CC} = 1.65 \lor \text{to} 1.95 \lor}{\bigvee_{CC} = 2.3 \lor \text{to} 2.7 \lor} \frac{0.65 \times \bigvee_{CC}}{1.7}$ $\frac{\bigvee_{CC} = 2.3 \lor \text{to} 2.7 \lor}{\bigvee_{CC} = 2.7 \lor \text{to} 3.6 \lor} 2$ $\frac{\bigvee_{CC} = 2.3 \lor \text{to} 2.7 \lor}{0.7} \underbrace{0.35 \times \bigvee_{CC}}{\bigvee_{CC} = 2.3 \lor \text{to} 2.7 \lor} 0.7}$ $\frac{\bigvee_{CC} = 2.3 \lor \text{to} 2.7 \lor}{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} $	-24		
	 Output voltage OH High-level output current 	V _{CC} = 1.65 V		4	
la:		V _{CC} = 2.3 V		12	
OL	Low-level output current	$V_{CC} = 2.7 V$		12	mA
		V _{CC} = 3 V		24	
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
Т _А	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES017E - JULY 1995 - REVISED FEBRUARY 1999

PAF	RAMETER	TEST CO	ONDITIONS	V _{CC}	MIN	түр†	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	2		
VOH		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2				
	I _{OH} = -6 mA		2.3 V	2				
			2.3 V	1.7			V	
	I _{OH} = -12 mA		2.7 V	2.2				
			3 V	2.4				
	I _{OH} = -24 mA	I _{OH} = -24 mA						
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
V _{OL}	I _{OL} = 4 mA		1.65 V			0.45		
	I _{OL} = 6 mA	2.3 V			0.4	v		
	la: 10 mA	2.3 V			0.7			
	I _{OL} = 12 mA	2.7 V			0.4			
		I _{OL} = 24 mA	3 V			0.55		
l		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.58 V	1.65 V	25				
ll(hold)		VI = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
		V _I = 1.7 V		2.3 V	-45			μA
		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		V _I = 0 to 3.6 V [‡]		3.6 V			±500	
Ioz§		$V_{O} = V_{CC}$ or GND		3.6 V			±10	μΑ
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ
ΔICC		One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs	$V_{I} = V_{CC}$ or GND		3.3 V		3.5		pF
C _{io}	A or B ports	V _O = V _{CC} or GND		3.3 V		9		pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. $\$ For I/O ports, the parameter I_OZ includes the input leakage current.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} =	1.8 V	V _{CC} = ± 0.2		V _{CC} =	2.7 V	V _{CC} = ± 0.3		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency			¶		130		130		130	MHz
tw	Pulse duration, CLK high or low		¶		3.3		3.3		3.3		ns
	Setup time	A before CLK↑	ſ		2.6		2.1		1.7		
t _{su}		B before LE	¶		1.7		1.5		1.3		ns
		CLKEN before CLK1	¶		1.6		1.3		1		
	Hold time	A after CLK1	ſ		0.6		0.6		0.7		
^t h		B after LE	¶		0.9		0.9		1.1		ns
		CLKEN after CLK1	¶		1		0.9		0.9		

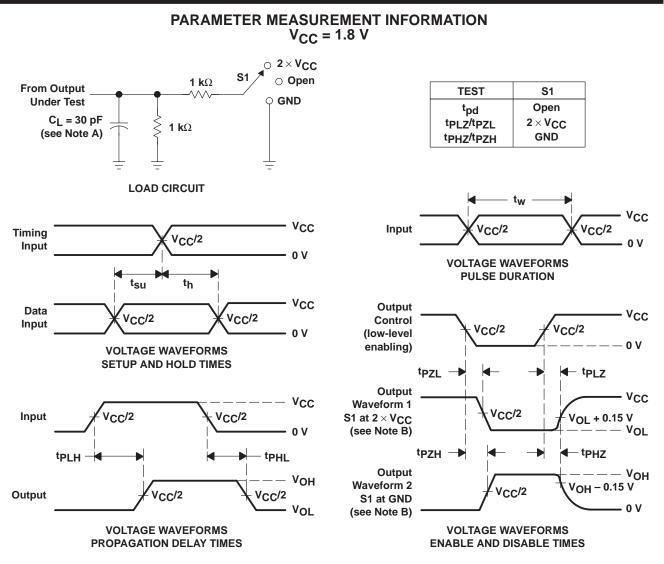
 \P This information was not available at the time of publication.

SCES017E - JULY 1995 - REVISED FEBRUARY 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)		V _{CC} =	1.8 V	= ۷ _{CC} ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	= ۷ _{CC} ± 0.3	3.3 V 3 V	UNIT
			MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		130		130		130		MHz
	CLK	В		†	1	6.2		5	1	4.3	
.	В			†	1	5.3		4.7	1.4	4	
^t pd	LE	А		†	1	6		5.9	1.4	4.8	ns
	SEL			†	1.1	6.4		6.2	1.3	5.2	
ten	OEB or OEA	B or A		†	1	6		6.1	1	5.1	ns
^t dis	OEB or OEA	B or A		†	1.4	5.4		4.6	1.7	4.2	ns

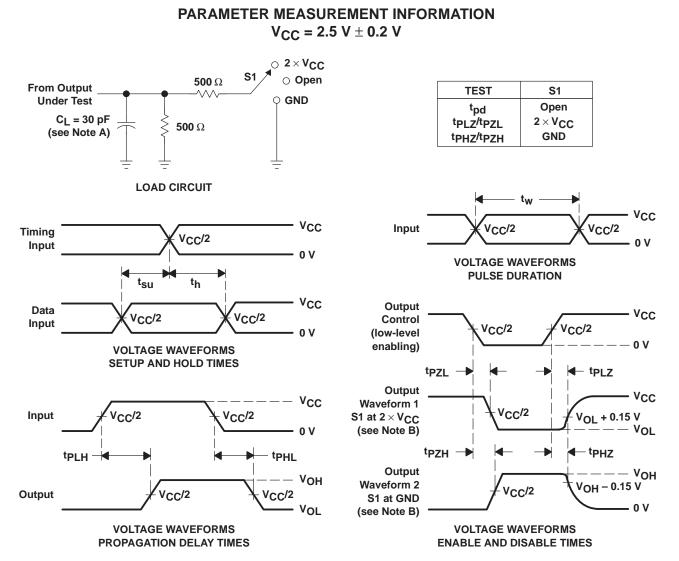
[†] This information was not available at the time of publication.


operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	FARAIN	PARAMETER			TYP	TYP	TYP	UNIT	
		A to B	Outputs enabled		†	92	105		
	Power dissipation	АЮВ	Outputs disabled		†	61	76	ρF	
C _{pd}	capacitance	capacitance		Outputs enabled	$C_L = 0$, $f = 10 MHz$	†	39	43	рг
		B to A	Outputs disabled	Ī	†	11	13		

[†] This information was not available at the time of publication.

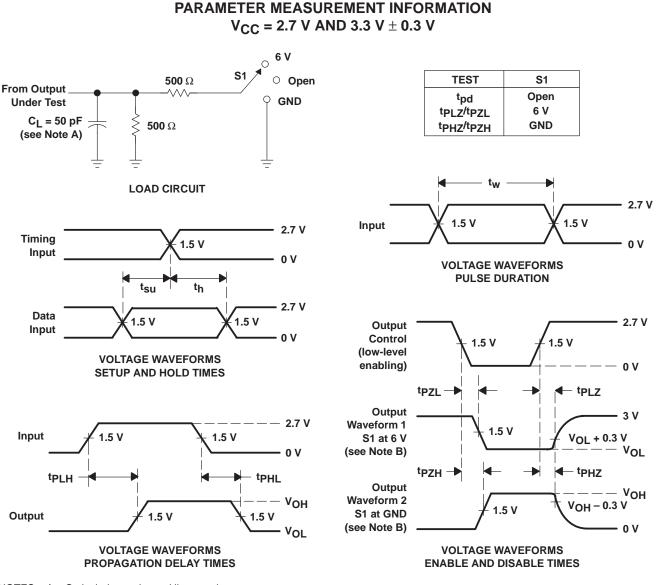
SCES017E - JULY 1995 - REVISED FEBRUARY 1999



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

SCES017E - JULY 1995 - REVISED FEBRUARY 1999


- NOTES: A. Cl includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.

 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tPLZ and tPHZ are the same as tdis.
 - F. tp71 and tp7H are the same as ten.
 - G. tpi H and tpHi are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCES017E - JULY 1995 - REVISED FEBRUARY 1999

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated