- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- EPIC ${ }^{\mathrm{TM}}$ (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 12 -bit to 24 -bit bus exchanger is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74ALVCH16271 is intended for applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. This device is particularly suitable as an interface between conventional DRAMs and high-speed microprocessors.
A data is stored in the internal A -to- B registers on the low-to-high transition of the clock (CLK) input, provided that the clock-enable ($\overline{\text { LLKENA }}$) inputs are low. Proper control of these inputs allows two sequential 12-bit words to be presented as a 24-bit word on the B port.

Transparent latches in the B-to-A path allow asynchronous operation to maximize memory access throughput. These latches transfer data when the latch-enable ($\overline{\mathrm{LE}}$) inputs are low. The select ($\overline{\mathrm{SEL}}$) line selects 1B or 2B data for the A outputs. Data flow is controlled by the active-low output enables ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$).
To ensure the high-impedance state during power up or power down, the output enables should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74ALVCH16271 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Function Tables

INPUTS		OUTPUTS	
$\overline{\text { OEA }}$	$\overline{\text { OEB }}$	A	1B, 2B
H	H	Z	Z
H	L	Z	Active
L	H	Active	Z
L	L	Active	Active

A-TO-B STORAGE $(\overline{\text { OEB }}=\mathrm{L})$					
INPUTS OUTPUTS $\overline{\text { CLKENA1 }}$ $\overline{\text { CLKENA2 }}$ CLK A 1B 2B H H X X $1 \mathrm{~B}_{0}{ }^{\dagger}$ $2 \mathrm{~B}_{0}{ }^{\dagger}$ L X \uparrow L L X L X \uparrow H H X X L \uparrow L X L X L \uparrow H A_{0} H					

B-TO-A STORAGE ($\overline{O E A}=\mathrm{L}$)				
INPUTS				OUTPUT A
$\overline{\text { LE }}$	$\overline{\text { SEL }}$	1B	2B	
H	X	X	X	$\mathrm{A}_{0}{ }^{\dagger}$
H	X	X	X	$\mathrm{A}_{0}{ }^{\dagger}$
L	H	L	X	L
L	H	H	X	H
L	L	X	L	L
L	L	X	H	H

[^0]INSTRUMENTS
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		1.65	3.6	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\text {CC }}$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		$0.35 \times \mathrm{V}_{\text {cC }}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8	
V_{1}	Input voltage		0	V_{CC}	V
V_{O}	Output voltage		0	V_{CC}	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		-4	mA
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-12	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-12	
		$V_{C C}=3 \mathrm{~V}$		-24	
${ }^{\text {IOL }}$	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		4	mA
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		12	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		24	
$\Delta t / \Delta \mathrm{v}$	Input transition rise or fall rate			10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§ For I/O ports, the parameter IOZ includes the input leakage current.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

[^1]switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V CC $=1.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN TYP	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			\dagger	130		130		130		MHz
${ }^{\text {tpd }}$	CLK	B	\dagger	1	6.2		5	1	4.3	ns
	B	A	\dagger	1	5.3		4.7	1.4	4	
	$\overline{\overline{L E}}$		\dagger	1	6		5.9	1.4	4.8	
	SEL		\dagger	1.1	6.4		6.2	1.3	5.2	
ten	$\overline{\mathrm{OEB}}$ or $\overline{\mathrm{OEA}}$	B or A	†	1	6		6.1	1	5.1	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OEB}}$ or $\overline{\mathrm{OEA}}$	B or A	\dagger	1.4	5.4		4.6	1.7	4.2	ns

\dagger This information was not available at the time of publication.
operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER				TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
				TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance	A to B	Outputs enabled		$C_{L}=0, f=10 \mathrm{MHz}$	\dagger	92	105	pF
			Outputs disabled	\dagger		61	76		
		B to	Outputs enabled	\dagger		39	43		
			Outputs disabled	\dagger		11	13		

\dagger This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION
 $$
\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}
$$

LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ^{2} are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tpZH are the same as ten.
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

$$
\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}
$$

TEST	S1
${ }_{\text {t }}$ d	Open
tPLZ $/$ PPZL	$2 \times \mathrm{V}$ C
${ }^{\text {tPHZ }}$ / ${ }^{\text {PRZH }}$	GND

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
PULSE DURATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $\quad t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. tpZL and tPZH are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 2. Load Circuit and Voltage Waveforms

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: \dagger Output level before the indicated steady-state input conditions were established

[^1]: IT This information was not available at the time of publication.

