- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Package Options Include Plastic $300-\mathrm{mil}$ Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

These 18 -bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, clocked, and clock-enabled modes.
Data flow in each direction is controlled by output-enable ($\overline{O E A B}$ and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable ($\overline{C L K E N A B}$ and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the Adata is stored in the latch/flip-flop on the low-to-high transition of CLKAB. Output enable $\overline{O E A B}$ is active low. When $\overline{O E A B}$ is low, the outputs are active. When $\overline{O E A B}$ is high, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B, but uses $\overline{O E B A}, ~ L E B A, ~ C L K B A, ~ a n d ~ C L K E N B A . ~ . ~$
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN54ABT16601 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16601 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

FUNCTION TABLE \dagger					
	INPUTS		OUTPUT		
B	CLKENAB	$\overline{\text { OEAB }}$	LEAB	CLKAB	A
X	H	X	X	X	Z
X	L	H	X	L	L
X	L	H	X	H	H
H	L	L	X	X	$\mathrm{B}_{0} \ddagger$
H	L	L	X	X	$\mathrm{B}_{0} \ddagger$
L	L	L	\uparrow	L	L
L	L	L	\uparrow	H	H
L	L	L	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	H	X	$\mathrm{B}_{0} \S$

† A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, CLKBA, and $\overline{C L K E N B A}$.
\ddagger Output level before the indicated steady-state input conditions were established
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN54ABT16601, SN74ABT16601

18-BIT UNIVERSAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS

SCBS210C - JUNE 1992 - REVISED JANUARY 1997
recommended operating conditions (see Note 3)

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

* On products compliant to MIL-PRF-38535, this parameter does not apply.
** This limit applies only to the SN74ABT16601.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
IThis is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABT16601, SN74ABT16601 18-BIT UNIVERSAL BUS TRANSCEIVERS
 WITH 3-STATE OUTPUTS

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ABT16601					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
$f_{\text {max }}$			150	200		150		MHz
tPLH	A or B	B or A	1.5	2.5	4.1	1	4.6	ns
tPHL			1.5	3.4	4.7	1	5.1	
tPLH	LEAB or LEBA	B or A	2	3.4	4.7	1	5.6	ns
tPHL			2	3.7	5	1	5.5	
tPLH	CLKAB or CLKBA	B or A	1.5	3.2	4.5	1	5.2	ns
tPHL			1.5	3.2	4.4	1	5	
tPZH	$\overline{O E A B}$ or $\overline{O E B A}$	B or A	2	4	5	1	5.7	ns
tPZL			2	4.2	5.6	1	6	
tPHZ	$\overline{\text { OEAB }}$ or $\overline{\text { OEBA }}$	B or A	2	4.5	5.8	1	6.8	ns
tPLZ			1.5	3.4	5.3	1	6.3	

SN54ABT16601, SN74ABT16601

18-BIT UNIVERSAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS

SCBS210C - JUNE 1992 - REVISED JANUARY 1997
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN74ABT16601					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
$f_{\text {max }}$			150	200		150		MHz
tPLH	A or B	B or A	1.5	2.5	3.6	1.5	4	ns
tPHL			1.5	3.4	4.7	1.5	4.9	
tPLH	LEAB or LEBA	B or A	2	3.4	4.7	2	5	ns
tPHL			2	3.7	5	2	5.2	
tpLH	CLKAB or CLKBA	B or A	1.5	3.2	4.5	1.5	4.7	ns
tPHL			1.5	3.2	4.4	1.5	4.6	
tPZH	$\overline{O E A B}$ or $\overline{O E B A}$	B or A	2	4	5	2	5.5	ns
tPZL			2	4.2	5.6	2	5.8	
tPHZ	$\overline{O E A B}$ or $\overline{O E B A}$	B or A	2	4.5	5.4	2	6.2	ns
tPLZ			1.5	3.4	4.7	1.5	5.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH $^{\text {/t }}$ PHL tPLZ/tPZL tPHZ/tpZH	Open 7 V Open

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

