SCES010E - JULY 1995 - REVISED FEBRUARY 1999

- Member of the Texas Instruments Widebus+™ Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- UBT[™] (Universal Bus Transceiver)
 Combines D-Type Latches and D-Type
 Flip-Flops for Operation in Transparent,
 Latched, or Clocked Mode
- Simultaneously Generates and Checks Parity
- Option to Select Generate Parity and Check or Feed-Through Data/Parity in A-to-B or B-to-A Directions
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Packaged in Thin Shrink Small-Outline Package

description

This 18-bit (dual-octal) noninverting registered transceiver is designed for 1.65-V to 3.6-V $\rm V_{CC}$ operation.

The SN74ALVCH16901 is a dual 9-bit to dual 9-bit parity transceiver with registers. The device can operate as a feed-through transceiver or it can generate/check parity from the two 8-bit data buses in either direction.

DGG PACKAGE (TOP VIEW)

				1
1CLKENAB	1	\cup	64	1 CLKENBA
LEAB [2		63] LEBA
CLKAB [3		62] CLKBA
1ERRA	4		61] 1ERRB
1APAR [5		60] 1BPAR
GND [6		59] GND
1A1 [7		58] 1B1
1A2 [8		57] 1B2
1A3 [56] 1B3
V _{CC} [10		55] v _{cc}
1A4 [54] 1B4
1A5 [53] 1B5
1A6 [13		52] 1B6
GND [14		51	GND
1A7 [15		50] 1B7
1A8 [16		49] 1B8
2A1 [17		48	2B1
2A2 [18		47	2B2
GND [1		46	GND
2A3 [20		45] 2B3
2A4 [21		44] 2B4
2A5 [22		43] 2B5
V _{CC}	23		42	□ v _{cc}
2A6 [24		41] 2B6
2A7 [25		40] 2B7
2A8 [26		39] 2B8
GND [27		38	GND
2APAR	28		37	2BPAR
2ERRA	29		36	2ERRB
OEAB [30		35	OEBA
SEL [31		34	ODD/EVEN
2CLKENAB	32		33	2CLKENBA

The SN74ALVCH16901 features independent clock (CLKAB or CLKBA), latch-enable (LEAB or LEBA), and dual 9-bit clock-enable (CLKENAB or CLKENBA) inputs. It also provides parity-enable (SEL) and parity-select (ODD/EVEN) inputs and separate error-signal (ERRA or ERRB) outputs for checking parity. The direction of data flow is controlled by OEAB and OEBA. When SEL is low, the parity functions are enabled. When SEL is high, the parity functions are disabled and the device acts as an 18-bit registered transceiver.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16901 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+, EPIC, and UBT are trademarks of Texas Instruments Incorporated.

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

Function Tables

FUNCTION†

	INPUTS								
CLKENAB	OEAB	LEAB	CLKAB	Α	В				
Х	Н	Χ	Х	Χ	Z				
Х	L	Н	Χ	L	L				
Х	L	Н	Χ	Н	Н				
н	L	L	Χ	Χ	в ₀ ‡				
L	L	L	\uparrow	L	L				
L	L	L	\uparrow	Н	Н				
L	L	L	L	Χ	в ₀ ‡				
L	L	L	Н	Χ	в ₀ §				

[†]A-to-B data flow is shown: B-to-A flow is similar, but uses OEBA, LEBA, and CLKENBA.

PARITY ENABLE

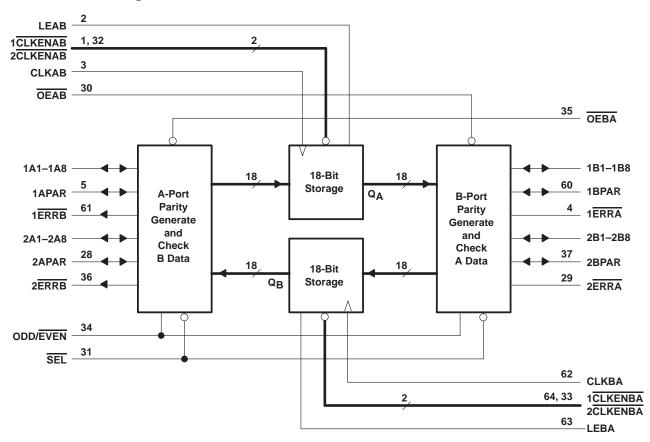
	INPUTS		ODER ATION OF	FUNCTION						
SEL	OEBA	OEAB	OPERATION OF	REUNCTION						
L	Н	L	Parity is checked on port A a	Parity is checked on port A and is generated on port B.						
L	L	Н	Parity is checked on port B a	nd is generated on port A.						
L	Н	Н	Parity is checked on port B and port A.							
L	L	L	Parity is generated on port A ar	nd B if device is in FF mode.						
Н	L	L		Q _A data to B, Q _B data to A						
Н	L	Н	Parity functions are disabled; device acts as a standard	Q _B data to A						
Н	Н	L	18-bit registered transceiver.	Q _A data to B						
Н	Н	Н	, , , , , , , , , , , , , , , , , , ,	Isolation						

[‡] Output level before the indicated steady-state input conditions were established

[§] Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

Function Tables (Continued)

PARITY


	INPUTS							OUT	PUTS		
SEL	OEBA	OEAB	ODD/EVEN	Σ OF INPUTS A1–A8 = H	Σ OF INPUTS B1-B8 = H	APAR	BPAR	APAR	ERRA	BPAR	ERRB
L	Н	L	L	0, 2, 4, 6, 8	N/A	L	N/A	N/A	Н	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	L	N/A	N/A	L	Н	Z
L	Н	L	L	0, 2, 4, 6, 8	N/A	Н	N/A	N/A	L	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	Н	N/A	N/A	Н	Н	Z
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	L	L	Z	N/A	Н
L	L	Н	L	N/A	1, 3, 5, 7	N/A	L	Н	Z	N/A	L
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	Н	L	Z	N/A	L
L	L	Н	L	N/A	1, 3, 5, 7	N/A	Н	н	Z	N/A	Н
L	Н	L	Н	0, 2, 4, 6, 8	N/A	L	N/A	N/A	L	Н	Z
L	Н	L	Н	1, 3, 5, 7	N/A	L	N/A	N/A	Н	L	Z
L	Н	L	Н	0, 2, 4, 6, 8	N/A	Н	N/A	N/A	Н	Н	Z
L	Н	L	Н	1, 3, 5, 7	N/A	Н	N/A	N/A	L	L	Z
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	L	Н	Z	N/A	L
L	L	Н	Н	N/A	1, 3, 5, 7	N/A	L	L	Z	N/A	Н
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	Н	н	Z	N/A	Н
L	L	Н	Н	N/A	1, 3, 5, 7	N/A	Н	L	Z	N/A	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	Н	Z	Н
L	Н	Н	L	1, 3, 5, 7	1, 3, 5, 7	L	L	z	L	Z	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	Н	Н	z	L	Z	L
L	Н	Н	L	1, 3, 5, 7	1, 3, 5, 7	Н	Н	z	Н	Z	Н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	L	Z	L
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	L	L	z	Н	Z	Н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	Н	Н	z	Н	Z	Н
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	Н	Н	Z	L	Z	L
L	L	L	L	N/A	N/A	N/A	N/A	PE†	Z	PE [†]	Z
L	L	L	Н	N/A	N/A	N/A	N/A	РО‡	Z	PO‡	Z

[†] Parity output is set to the level so that the specific bus side is set to even parity.

[‡] Parity output is set to the level so that the specific bus side is set to odd parity.

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, $I_{ K }(V_1 < 0)$	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3)	73°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed..

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Supply voltage		1.65	3.6	V	
	$V_{CC} = 1.65 \text{ V to}$		0.65 × V _{CC}			
٧ıH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		0.35 × V _{CC}		
٧ _{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
٧ _I	Input voltage		0	VCC	V	
٧o	Output voltage		0	Vcc	V	
		V _{CC} = 1.65 V		-4		
la		V _{CC} = 2.3 V		-12	mA	
ЮН	High-level output current	V _{CC} = 2.7 V		-12		
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
1	Lauria cal autout auront	V _{CC} = 2.3 V		12	A	
lOL	Low-level output current	V _{CC} = 2.7 V		12	mA	
	VCC = 3 V			24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER	TEST CO	ONDITIONS	VCC	MIN	TYP [†]	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	.2		
		I _{OH} = -4 mA		1.65 V	1.2			
		I _{OH} = -6 mA	2.3 V	2				
Vон				2.3 V	1.7			V
		I _{OH} = -12 mA		2.7 V	2.2			
			3 V	2.4				
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
		$I_{OL} = 4 \text{ mA}$		1.65 V			0.45	
\ \/ ~ .		I _{OL} = 6 mA		2.3 V			0.4	
VOL		In. 40 mA	2.3 V			0.7	V	
		I _{OL} = 12 mA	2.7 V			0.4		
		I _{OL} = 24 mA	3 V			0.55		
lı		V _I = V _{CC} or GND	3.6 V			±5	μΑ	
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V	1.65 V	-25				
		V _I = 0.7 V		2.3 V	45			
I _I (hold)		V _I = 1.7 V		2.3 V	-45			μΑ
` ´		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_{I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
loz§		VO = VCC or GND		3.6 V			±10	μΑ
Icc		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ
ΔICC		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		3		pF
-	A or B ports	VO = VCC or GND		3.3 V		7.5		pF
	ERR ports	$V_O = V_{CC}$ or GND		3.3 V		6		pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

 $[\]mbox{\ensuremath{\$}}\mbox{ For I/O}\mbox{ ports, the parameter IOZ}\mbox{ includes the input leakage current.}$

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			VCC =	1.8 V	V _{CC} =		VCC =	2.7 V	V _{CC} =		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
fclock	f _{clock} Clock frequency			†		125		125		125	MHz	
	Pulse	CLK↑	†		3		3		3		ns	
ı,M	t _W duration	duration	LE high	†		3		3		3		115
		A, APAR or B, BPAR before CLK↑	†		1.9		2		1.7			
t _{su}	Setup time	CLKEN before CLK↑	†		2.1		2.1		1.7		ns	
		A, APAR or B, BPAR before LE↓	†		1.4		1.3		1.2			
		A, APAR or B, BPAR after CLK↑	†		0.4		0.4		0.5			
t _h	Hold time	CLKEN after CLK↑	†		0.5		0.5		0.7		ns	
		A, APAR or B, BPAR after LE↓	†		0.9	·	1.1	·	0.9	·		

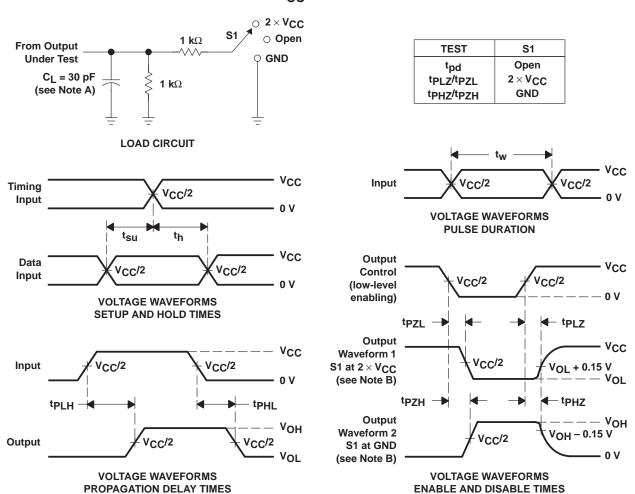
[†] This information was not available at the time of publication.

SCES010E - JULY 1995 - REVISED FEBRUARY 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V	V _{CC} =		V _{CC} =	2.7 V	V _{CC} =		UNIT
	(INFOT)	(001F01)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		125		125		125		MHz
	A or B	B or A		†	1	5.2		4.8	1	4.4	
	AUIB	BPAR or APAR		†	2	8.9		7.6	2	6.7	
	APAR or BPAR	BPAR or APAR		†	1	5.7		5.2	1	4.7	
	AI AIX OI BI AIX	ERRA or ERRB		†	2	9.7		8.7	2	7.5	
	ODD/EVEN	ERRA or ERRB		†	1.5	8.7		7.9	1.5	6.8	
		BPAR or APAR		†	1.5	8.3		7.6	1.5	6.5	
	SEL	BPAR or APAR		†	1	6.1		5.9	1	5.1	
		A or B		†	1	6.4		5.8	1	5.1	
^t pd	CLKAB or CLKBA	BPAR or APAR parity feedthrough		†	1.5	7.1		6.3	1.5	5.6	ns
		BPAR or APAR parity generated		†	2.5	10.2		8.7	2	7.7	
		ERRA or ERRB		†	2.5	10.5		8.9	2	7.9	
		A or B		†	1	6		5.5	1	4.8	
	LEAB or LEBA	BPAR or APAR parity feedthrough		†	1.5	6.7		6	1.5	5.3	
	LEAB OF LEBA	BPAR or APAR parity generated		†	2.5	9.8		8.3	2	7.4	
		ERRA or ERRB		†	2.5	9.9		8.5	2	7.5	
^t en	OEAB or OEBA	B, BPAR or A, APAR		†	1.4	6.3		6.1	1	5.3	ns
^t dis	OEAB or OEBA	B, BPAR or A, APAR		†	1.3	6.1		5.2	1.5	4.9	ns
t _{en}	OEAB or OEBA	ERRA or ERRB		†	1.4	6.2		5.5	1	4.9	ns
t _{dis}	OEAB or OEBA	ERRA or ERRB		†	1.3	7.3		6.5	1	5.7	ns
t _{en}	SEL	ERRA or ERRB		†	1.4	6.7		6.5	1	5.5	ns
t _{dis}	SEL	ERRA or ERRB		†	1.3	6.4		5.4	1.5	4.9	ns

[†] This information was not available at the time of publication.


operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDIT	PIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
			TEST CONDIT	10143	TYP	TYP	TYP	UNIT	
<u> </u>	Power dissipation	Outputs enabled	C 50 pE _ f _	: 10 MHz	†	22	27	pF	
C _{pd}	capacitance	Outputs disabled	$C_L = 50 \text{ pF}, f =$: IU IVIIIZ	†	5	8	pr	

[†] This information was not available at the time of publication.

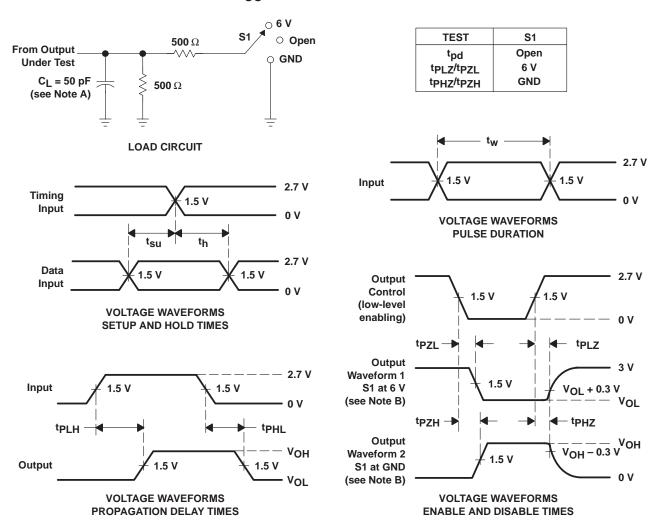
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 V$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 V \pm 0.2 V$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω , $t_{r} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns,
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl 7 and tpH7 are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated