DGG, DGV, OR DL PACKAGE

(TOP VIEW)

SCES095C - MARCH 1997 - REVISED MAY 1998

- **Member of the Texas Instruments** Widebus™ Family
- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- **Checks Parity**
- Able to Cascade With a Second SN74ALVCH16903
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown**
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages

description

This 12-bit universal bus driver is designed for 2.3-V to 3.6-V V_{CC} operation.

The SN74ALVCH16903 has dual outputs and can operate as a buffer or an edge-triggered register. In both modes, parity is checked on APAR, which arrives one cycle after the data to which it applies. The YERR output, which is produced one cycle after APAR, is open drain.

OE 56 CLK 55 🛮 1A 1Y1 2 1Y2 🛮 3 54 11A/YERREN GND II4 53 GND 2Y1 **[**] 5 52 11Y1 2Y2 6 51 11Y2 V_{CC} 47 50 V_{CC} 3Y1 🛮 8 49 🛮 2A 3Y2 🛮 9 48 🛮 3A 4Y1 10 47 🛮 4A GND 11 46 GND 4Y2 🛮 12 45 12A 44 1 12Y1 5Y1 | 13 5Y2 🛮 14 43 12Y2 6Y1 🛮 42 5A 15 6Y2 16 41 6A 7Y1 ∏ 17 40 7A GND [18 39 GND 7Y2 119 38 APAR 8Y1 **2**0 37 8A 36 YERR 8Y2 121 V_{CC} <u>↓</u> 22 35 V_{CC} 9Y1 23 34 🛮 9A 9Y2 24 33 MODE GND II 25 32 GND 10Y1 126 31 10A 10Y2 30 PARI/O

27

PAROE 28

29 CLKEN

MODE selects one of the two data paths. When MODE is low, the device operates as an edge-triggered register. On the positive transition of the clock (CLK) input and when the clock-enable (CLKEN) input is low, data set up at the A inputs is stored in the internal registers. On the positive transition of CLK and when $\overline{\text{CLKEN}}$ is high, only data set up at the 9A–12A inputs is stored in their internal registers. When MODE is high, the device operates as a buffer and data at the A inputs passes directly to the outputs. 11A/YERREN serves a dual purpose; it acts as a normal data bit and also enables $\overline{\mathsf{YERR}}$ data to be clocked into the $\overline{\mathsf{YERR}}$ output register.

When used as a single device, parity output enable (PAROE) must be tied high; when parity input/output (PARI/O) is low, even parity is selected and when PARI/O is high, odd parity is selected. When used in pairs and PAROE is low, the parity sum is output on PARI/O for cascading to the second SN74ALVCH16903. When used in pairs and PAROE is high, PARI/O accepts a partial parity sum from the first SN74ALVCH16903.

A buffered output-enable (\overline{OE}) input can be used to place the 24 outputs and \overline{YERR} in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

description (continued)

OE does not affect the internal operation of the device. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16903 is characterized for operation from 0°C to 70°C.

Function Tables

FUNCTION

		INPUTS			OUTPUTS			
ŌĒ	MODE	CLKEN	CLK	Α	1Y _n † – 8Y _n †	9Y _n † – 12Y _n †		
L	L	L	↑	Н	Н	Н		
L	L	L	\uparrow	L	L	L		
L	L	Н	\uparrow	Н	Y ₀	Н		
L	L	Н	\uparrow	L	Y ₀	L		
L	Н	X	Χ	Н	Н	Н		
L	Н	X	Χ	L	L	L		
Н	X	X	Χ	X	Z	Z		

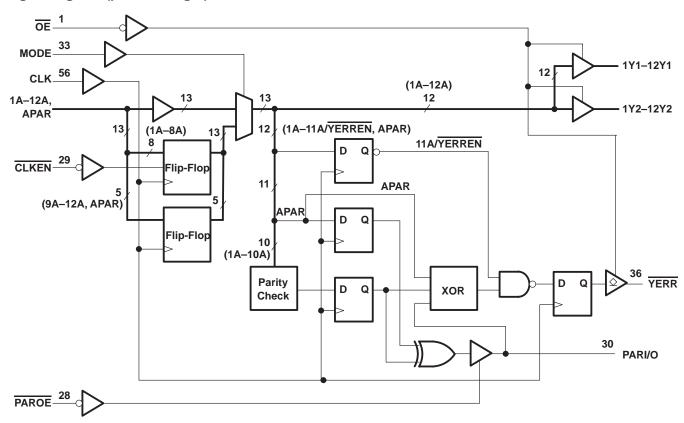
† n = 1, 2

PARITY FUNCTION

		INP	UTS			ОИТРИТ
ŌĒ	PAROE [‡]	11A/YERREN§	PARI/O	Σ OF INPUTS 1A – 10A = H	APAR	YERR
L	Н	L	L	0, 2, 4, 6, 8, 10	L	Н
L	Н	L	L	1, 3, 5, 7, 9	L	L
L	Н	L	L	0, 2, 4, 6, 8, 10	Н	L
L	Н	L	L	1, 3, 5, 7, 9	Н	Н
L	Н	L	Н	0, 2, 4, 6, 8, 10	L	L
L	Н	L	Н	1, 3, 5, 7, 9	L	Н
L	Н	L	Н	0, 2, 4, 6, 8, 10	Н	Н
L	Н	L	Н	1, 3, 5, 7, 9	Н	L
Н	Х	Х	Х	Х	Х	Н
L	Х	Н	Х	Х	Х	Н

[‡]When used as a single device, PAROE must be tied high.

[§] Valid after appropriate number of clock pulses have set internal register


Function Tables (Continued)

PARI/O FUNCTION†

	INPUTS		OUTPUT
PAROE	Σ OF INPUTS 1A – 10A = H	APAR	PARI/O
L	0, 2, 4, 6, 8, 10	L	L
L	1, 3, 5, 7, 9	L	Н
L	0, 2, 4, 6, 8, 10	Н	Н
L	1, 3, 5, 7, 9	Н	L
Н	X	Х	Z

[†] This table applies to the first device of a cascaded pair of ALVCH16903 devices.

logic diagram (positive logic)

SN74ALVCH16903 3.3-V 12-BIT UNIVERSAL BUS DRIVER WITH PARITY CHECKER AND DUAL 3-STATE OUTPUTS

SCES095C - MARCH 1997 - REVISED MAY 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Output voltage range, VO (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG pack	age 81°C/W
DGV pack	age 86°C/W
DL packag	ge 74°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

				MIN	MAX	UNIT		
Vcc	Supply voltage			2.3	3.6	V		
\/	High level input voltage	V _{CC} = 2.3 V to	2.7 V	1.7		V		
VIH	High-level input voltage	$V_{CC} = 2.7 \text{ V to}$	3.6 V	2		V		
\/,,	Low-level input voltage	$V_{CC} = 2.3 \text{ V to}$	2.7 V		0.7	V		
VIL	Low-level input voltage	$V_{CC} = 2.7 \text{ V to}$	V _{CC} = 2.7 V to 3.6 V			V		
٧ _I	Input voltage			0	VCC	V		
۷o	Output voltage			0	VCC	V		
		V _{CC} = 2.3 V	Y port		-12			
lou	High-level output current	$V_{CC} = 2.7 V$			-12	mA		
ЮН	riigh-level output current	V _{CC} = 3 V	PARI/O	-1		IIIA		
		\(\frac{1}{100} = 3 \tau\)	Y port		-24			
		$V_{CC} = 2.3 V$	Y port		12			
		$V_{CC} = 2.7 V$	T port		12			
IOL	Low-level output current		PARI/O		12	mA		
		VCC = 3 V	Y port		24			
			YERR output		24			
$\Delta t/\Delta v$	Input transition rise or fall rate		0	10	ns/V			
T_A	Operating free-air temperature	Operating free-air temperature						

NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST (CONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT	
		I _{OH} = -100 μA		2.3 V to 3.6 V	V _{CC} -0.	2			
		I _{OH} = -6 mA,	V _{IH} = 1.7 V	2.3 V	2				
	V nort		V _{IH} = 1.7 V	2.3 V	1.7				
Vон	Y port	I _{OH} = -12 mA	V _{IH} = 2 V	2.7 V	2.2			V	
			VIH = 2 V	3 V	2.4				
		$I_{OH} = -24 \text{ mA},$	V _{IH} = 2 V	3 V	2				
	PARI/O	$I_{OH} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2				
		I _{OL} = 100 μA		2.3 V to 3.6 V			0.2		
		I _{OL} = 6 mA,	V _{IL} = 0.7 V	2.3 V			0.4		
	Y port	Y port	1- 40 mA	V _{IL} = 0.7 V	2.3 V			0.7	
VOL		I _{OL} = 12 mA	V _{IL} = 0.8 V	2.7 V			0.4	V	
		I _{OL} = 24 mA,	V _{IL} = 0.8 V	3 V			0.55		
	PARI/O	I _{OL} = 12 mA,	V _{IL} = 0.8 V	3 V			0.55		
	YERR output	I _{OL} = 24 mA		3 V			0.5		
Ι _Ι	•	$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ	
		V _I = 0.7 V		2.3 V	45				
		V _I = 1.7 V		2.3 V	-45				
I _I (hold)		V _I = 0.8 V	3 V	75			μΑ		
` ′		V _I = 2 V		3 V	-75				
		$V_{I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500		
IOH	YERR output	AO = ACC		0 to 3.6 V			±10	μΑ	
loz§		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ	
Icc		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ	
Δlcc		One input at V _{CC} –0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ	
<u> </u>	Control inputs	V. V or CND		221		5.5			
Ci	Data inputs	VI = VCC or GND		3.3 V		5.5		pF	
	YERR output	V- V 10 OND		201/		5		pF	
Co	Data outputs	$V_O = V_{CC}$ or GND		3.3 V		6			
C _{io}	PARI/O	V _O = V _{CC} or GND		3.3 V		7		pF	
	1	1 00							

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current required to switch the input from one state to another.

 $[\]mbox{\ensuremath{\$}}\mbox{ For I/O}\mbox{ ports, the parameter I}_{\mbox{\ensuremath{OZ}}\mbox{ includes the input leakage current.}$

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figures 1 and 4)

				V _{CC} =		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency				125		125		125	MHz
t _W	Pulse duration, CLK	<u>:</u>		3		3		3		ns
		1A–12A before CLK↑	Register mode	1.7		1.9		1.45		
	Setup time	1A–10A before CLK↑	Buffer mode	5.9		5.2		4.4		
		APAR before CLK↑	Register mode	1.2		1.5		1.3		
t _{su}			Buffer mode	4.6		3.6		3.1		ns
		PARI/O before CLK↑	Both modes	2.4		2		1.7		
		11A/YERREN before CLK↑	Buffer mode	2		1.9		1.6		
		CLKEN before CLK↑	Register mode	2.5		2.6		2.2		
		1A–12A after CLK↑	Register mode	0.4		0.25		0.55		
		1A–10A after CLK↑	Buffer mode	0.25		0.25		0.25		
		ABAB (OLIKA	Register mode	0.7		0.4		0.7		
1.	Hold time	APAR after CLK↑	Buffer mode	0.25		0.25		0.25		
l th	Hold little	DA DI/O - (1 OL) / (1	Register mode	0.25		0.25		0.4		ns
		PARI/O after CLK↑		0.25		0.25		0.5		
		11A/YERREN after CLK↑	Buffer mode	0.25		0.25		0.4		
		CLKEN after CLK↑	Register mode	0.25		0.5		0.4		

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 4)

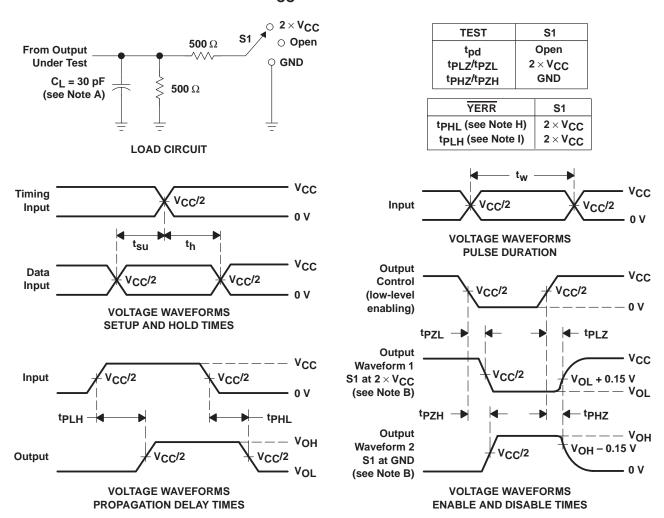
PARAMETER		FROM (INPUT)	TO (OUTPUT)		V _{CC} = 2.5 V ± 0.2 V		2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT	
		(1141 01)	(0011 01)	MIN	MAX	MIN	MAX	MIN	MAX		
fmax				125		125		125		MHz	
	Buffer mode	А	Υ	1	4.4		4.2	1.1	3.8		
t _{pd}	Both modes	CLK	YERR	1	5.7		4.9	1.4	4.4	ns	
		CLK	PARI/O	1.2	8.6		7.9	1.7	6.6		
t _{pd} †	Both modes	CLK	PARI/O	1	6.8		5.2	1.3	4.5	ns	
tpd	Both modes	MODE	Υ	1	5.9		5.8	1.3	4.9	ns	
tPLH	Register mode	CLK	Y	1	6.1		5.5	1.2	4.8	ns	
tPHL	Register mode	CLK		1	5.9		4.9	1.2	4.6	115	
	Both modes	ŌĒ	Υ	1.1	6.5		6.4	1.4	5.4	20	
t _{en}	Both modes	PAROE	PARI/O	1	5.6		6	1	4.8	ns	
4	Both modes	ŌĒ	Y	1	6.4		5.2	1.7	5	20	
^t dis	Botti inodes	PAROE	PARI/O	1	3.2		3.8	1.2	3.8	ns	
tPLH	Dath mades	Dath mades	ŌĒ	ŌE YERR	1	3.6		4.2	1.9	4	ns
tPHL	Both modes	OE	IEKK	1.2	5.1		4.9	1.5	4.2	115	

[†] See Figures 2 and 5 for the load specification.

simultaneous switching characteristics (see Figures 3 and 6)†

PAF	RAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =		V _{CC} =	2.7 V	V _{CC} =		UNIT
		(INFOT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	
tPLH	Pagistar mada	CLK	V	1.8	6.5		6.1	1.8	5	no
tPHL	Register mode	CLK	ľ	1.4	5.9		5.1	1.7	4.5	ns

[†] All outputs switching

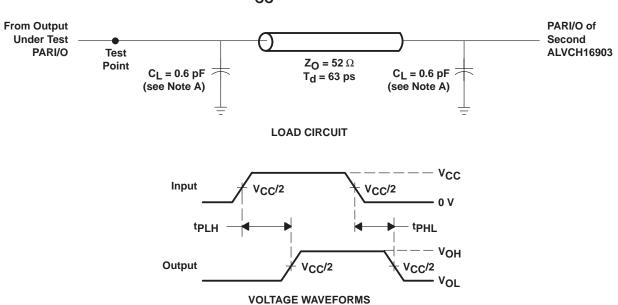

operating characteristics for buffer mode, T_A = 25°C

	PARAMETER			ONDITIONS	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
					HIF	IIF		
	Power dissipation capacitance	Outputs enabled	C 0	f = 10 MHz	57.5	65	pF	
C _{pd}	rower dissipation capacitance	Outputs disabled	$C_L = 0$,	1 = 10 101112	15	17.5	Pi	

operating characteristics for register mode, $T_A = 25^{\circ}C$

	PARAMETER	TEST C	ONDITIONS	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT		
					TYP	TYP		
	Dower dissination consistence	Outputs enabled	C 0	f _ 10 MH=	57	87.5	nE.	
Cbq	Power dissipation capacitance	Outputs disabled	C _L = 0,	f = 10 MHz	16.5	34	pF	

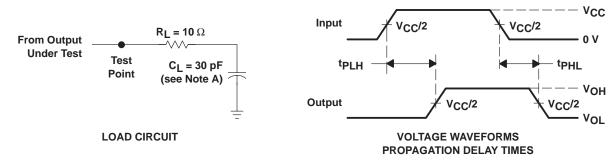
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.
- H. t_{PHL} is measured at V_{CC}/2.
- I. tpLH is measured at VOL + 0.15 V.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

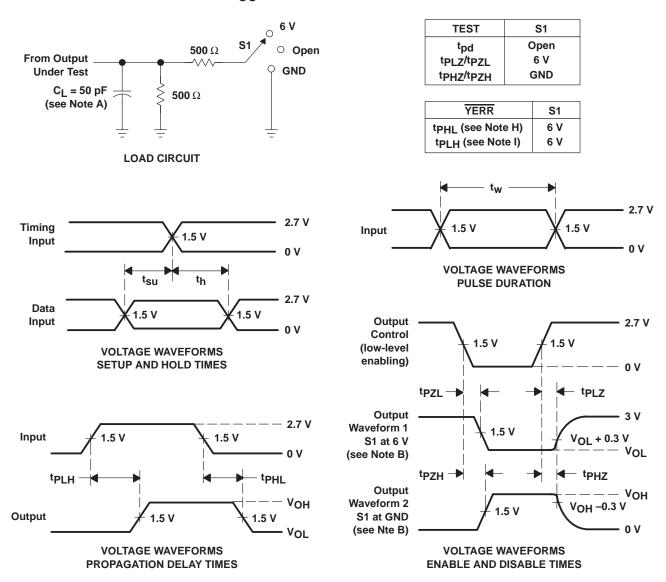


NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- C. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PROPAGATION DELAY TIMES

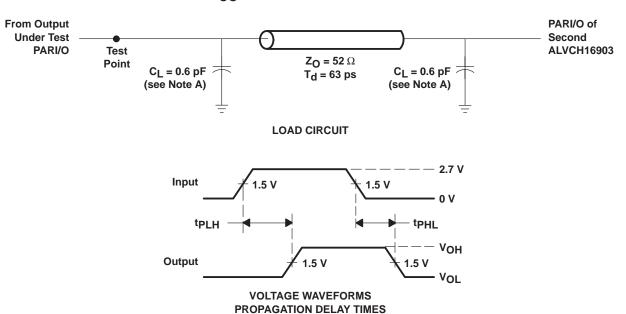


NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.

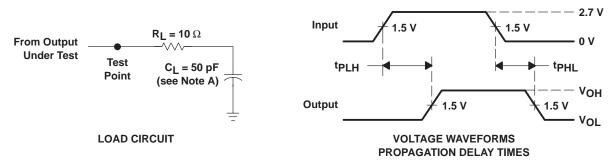
Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V



- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl 7 and tpH7 are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.
 - H. tpHL is measured at 1.5 V.
 - I. tpl H is measured at VOI + 0.3 V.

Figure 4. Load Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. tpLH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms

NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.

Figure 6. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated