- Member of the Texas Instruments Widebus™ Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- UBT[™] (Universal Bus Transceiver)
 Combines D-Type Latches and D-Type
 Flip-Flops for Operation in Transparent,
 Latched, or Clocked Mode
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors

- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Packaged in Plastic Fine-Pitch Ball Grid Array Package

description

This 36-bit universal bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

This device can be used as two 18-bit transceivers or one 36-bit transceiver. Data flow in each direction is controlled by output-enable (OEAB and $\overline{\text{OEBA}}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B, but uses $\overline{\text{OEBA}}$, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and $\overline{\text{OEBA}}$ is active low).

To ensure the high-impedance state during power up or power down, $\overline{\text{OEBA}}$ should be tied to V_{CC} through a pullup resistor and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH32501 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE†

	INPUTS							
OEAB	LEAB	CLKAB	Α	В				
L	Χ	Χ	Χ	Z				
Н	Н	Χ	L	L				
Н	Н	Χ	Н	Н				
Н	L	\uparrow	L	L				
Н	L	\uparrow	Н	Н				
Н	L	Н	Χ	B ₀ ‡				
н	L	L	Χ	В ₀ §				

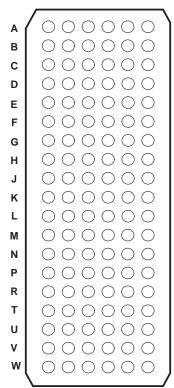
[†]A-to-B data flow is shown; B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC, UBT, and Widebus are trademarks of Texas Instruments.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

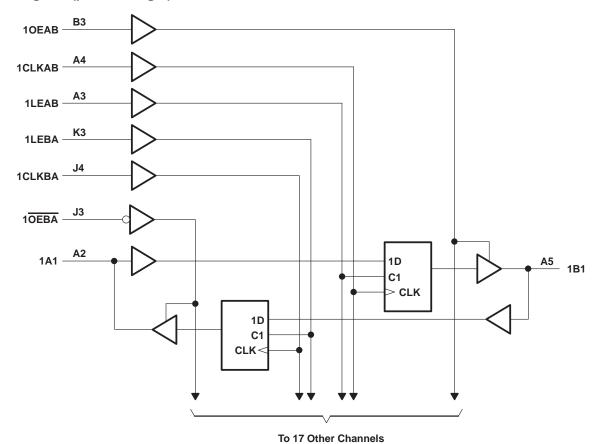
[§] Output level before the indicated steady-state input conditions were established


SN74ALVCH32501 36-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

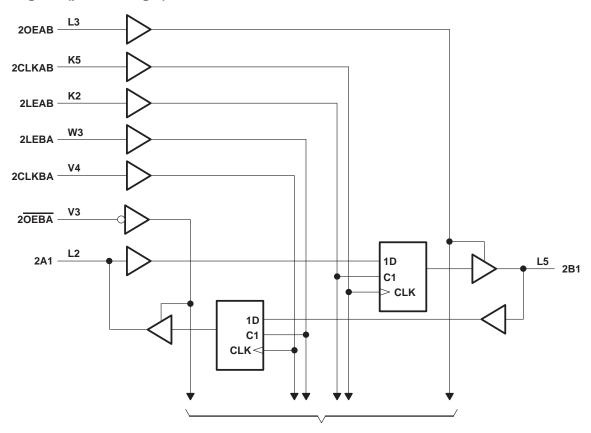
SCES144C - OCTOBER 1998 - REVISED MAY 2000

terminal assignments

GKF PACKAGE (TOP VIEW)


1 2 3 4 5 6

	1	2	3	4	5	6
Α	1A2	1A1	1LEAB	1CLKAB	1B1	1B2
В	1A4	1A3	10EAB	GND	1B3	1B4
С	1A6	1A5	GND	GND	1B5	1B6
D	1A8	1A7	Vcc	Vcc	1B7	1B8
Е	1A10	1A9	GND	GND	1B9	1B10
F	1A12	1A11	GND	GND	1B11	1B12
G	1A14	1A13	Vcc	Vcc	1B13	1B14
н	1A15	1A16	GND	GND	1B16	1B15
J	1A17	1A18	1OEBA	1CLKBA	1B18	1B17
K	NC	2LEAB	1LEBA	GND	2CLKAB	NC
L	2A2	2A1	20EAB	GND	2B1	2B2
М	2A4	2A3	GND	GND	2B3	2B4
N	2A6	2A5	Vcc	Vcc	2B5	2B6
Р	2A8	2A7	GND	GND	2B7	2B8
R	2A10	2A9	GND	GND	2B9	2B10
Т	2A12	2A11	Vcc	Vcc	2B11	2B12
U	2A14	2A13	GND	GND	2B13	2B14
٧	2A15	2A16	2OEBA	2CLKBA	2B16	2B15
w	2A17	2A18	2LEBA	GND	2B18	2B17


NC – No internal connection

logic diagram (positive logic)

INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2)	00
Output voltage range, V _O (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, $I_{ K }(V_1 < 0)$	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3)	39°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output-current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

SN74ALVCH32501 36-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCES144C - OCTOBER 1998 - REVISED MAY 2000

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vcc	Supply voltage		1.65	3.6	V
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$		
ViH	Vcc = Vcc	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2	3.6	
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	1.65 3.6 0.65 × V _{CC} 1.7 2 0.35 × V _{CC} 0.7 0.8 0 V _{CC} 0 V _{CC} -4 -12 -12 -24 4 12 24 10	$0.35 \times V_{CC}$	
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		toltage	8.0		
٧ı	Input voltage		0	Vcc	V
٧o	Output voltage		0	VCC	V
		V _{CC} = 1.65 V		-4	
	CC Supply voltage	-12	mA		
IOH	nigh-level output current	V _{CC} = 2.7 V	1.65 3.6 V _{CC} = 1.65 V to 1.95 V 0.65 × V _{CC} V _{CC} = 2.3 V to 2.7 V 1.7 V _{CC} = 2.7 V to 3.6 V 2 V _{CC} = 1.65 V to 1.95 V 0.35 × V _{CC} V _{CC} = 2.3 V to 2.7 V 0.7 V _{CC} = 2.7 V to 3.6 V 0.8	IIIA	
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	mA		
$V_{CC} = 1.65 \ V \ to \ 1$ $V_{CC} = 2.3 \ V \ to \ 2.7$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 1.65 \ V \ to \ 1$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 2.7$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{I} \text{Input voltage}$ $V_{O} \text{Output voltage}$ $V_{O} \text{Output voltage}$ $V_{CC} = 1.65 \ V$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.3 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 2.7 \ V \ to \ 3.6$ $V_{CC} = 3 \ V \ to \ 3.6$ $V_{CC} = 3 \ V \ to \ 3.6$ $V_{CC} = 3 \ V \ to \ 3.6$	V _{CC} = 2.7 V		12	MA	
	High-level input voltage V _{CC} = 1.65 V to 1.95 V 0.65 × V V _{CC} = 2.3 V to 2.7 V 1.7 V _{CC} = 2.7 V to 3.6 V 2 V _{CC} = 1.65 V to 1.95 V V _{CC} = 2.7 V to 3.6 V 2 V _{CC} = 2.7 V to 3.6 V V _{CC} = 2.7 V V _{CC} = 2.3 V V _{CC} = 2.3 V V _{CC} = 2.7 V V _{CC} = 3 V V _{CC} = 3 V V _{CC} = 2.3 V V _{CC} = 2.3 V V _{CC} = 2.3 V V _{CC} = 2.7 V V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate			10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74ALVCH32501 **36-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS**

SCES144C - OCTOBER 1998 - REVISED MAY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	VCC	MIN	TYP†	MAX	UNIT	
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} -0	.2			
	$I_{OH} = -4 \text{ mA}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	I _{OH} = -100 μA						
VOH		2.3 V	1.7			V	
	$I_{OH} = -12 \text{ mA}$	2.7 V	2.2				
		3 V	2.4				
	$I_{OH} = -24 \text{ mA}$	3 V	2				
	$I_{OL} = 100 \mu\text{A}$	1.65 V to 3.6 V			0.2		
	$I_{OL} = 4 \text{ mA}$	1.65 V			0.45		
V _{OL}	$I_{OL} = 6 \text{ mA}$	2.3 V			0.4	V	
VOL VOL	lo. – 12 m/s	2.3 V			0.7	V	
	IOL = 12 IIIA	2.7 V			0.4		
	$I_{OL} = 24 \text{ mA}$	3 V			0.55		
I _I	$V_I = V_{CC}$ or GND	3.6 V			±5	μΑ	
	V _I = 0.58 V	1.65 \/	25				
	V _I = 1.07 V	1.05 V	-25				
	V _I = 0.7 V	221/	45				
l _{l(hold)}	V _I = 1.7 V	2.3 V	-45			μΑ	
	V _I = 0.8 V	2 1/	75				
	V _I = 2 V	3 V	-75			1 1	
	$V_I = 0$ to 3.6 V^{\ddagger}	3.6 V			±500		
I _{OZ} §	$V_O = V_{CC}$ or GND	3.6 V			±10	μΑ	
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V			20	μΑ	
∆lcc	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ	
C _i Control in	puts V _I = V _{CC} or GND	3.3 V		4		pF	
C _{io} A or B po	rts $V_O = V_{CC}$ or GND	3.3 V		8		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. † This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

 $[\]mbox{\ensuremath{\,^\circ}}\mbox{For I/O}$ ports, the parameter $\mbox{\ensuremath{\,^\circ}}\mbox$

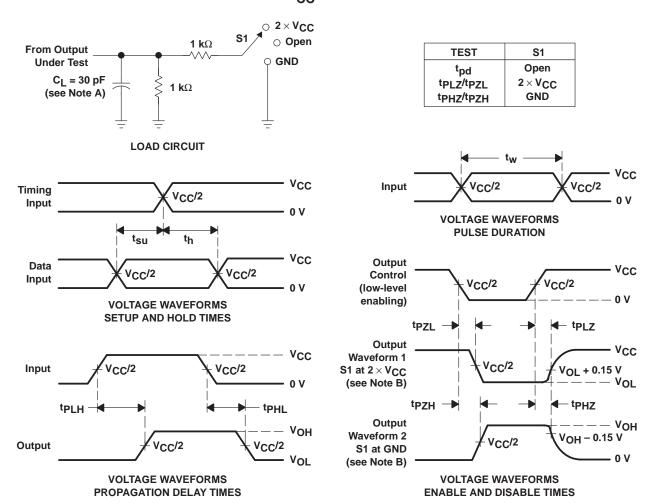
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

		V _{CC} =	1.8 V	V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =		UNIT		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock} Clock frequency			†		150		150		150	MHz		
	t _W Pulse duration	LE high		†		3.3		3.3		3.3		ns
, M		CLK high or low		†		3.3		3.3		3.3		115
		Data before CLK1		†		2.2		2.1		1.7		
t _{su}	Setup time	Data before LE↓	CLK high	†		1.9		1.6		1.5		ns
		Data before LE↓ CLK low	CLK low	†		1.3		1.1		1		
.	Hold time	Data after CLK↑		†		0.6		0.6		0.7		ns
th	i ioid tillle	Data after LE↓	CLK high or low	†		1.4		1.7		1.4		115

[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	V _{CC} = 1.8 V		V _{CC} = 1.8 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V	
	(INFOT)	(001F01)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX			
f _{max}			†		150		150		150		MHz		
	A or B	B or A		†	1	4.8		4.5	1	3.9			
^t pd	LE AB	A or B		†	1.1	5.7		5.3	1.3	4.6	ns		
	CLK	AUID		†	1.2	6.1		5.6	1.4	4.9			
t _{en}	OEAB	В		†	1	5.8		5.3	1	4.6	ns		
^t dis	OEAB	В		†	1.5	6.2		5.7	1.4	5	ns		
t _{en}	OEBA	А		†	1.3	6.3		6	1.1	5	ns		
^t dis	OEBA	А		†	1.3	5.3		4.6	1.3	4.2	ns		

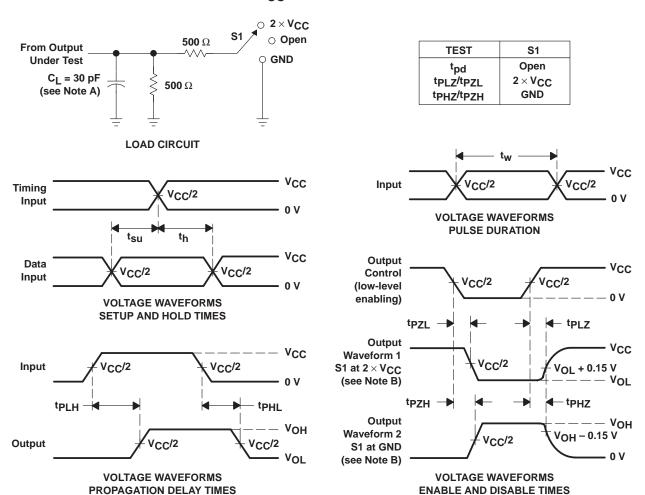

[†] This information was not available at the time of publication.

operating characteristics, T_A = 25°C

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT		
	TAKAMETEK		TEST CONDITIONS	TYP	TYP	TYP	ONIT	
		Power dissipation	Outputs enabled	Cı = 0. f = 10 MHz	†	44	54	pF
L	C _{pd}	capacitance	Outputs disabled	$C_L = 0$, $f = 10 MHz$	† 6	6	pr	

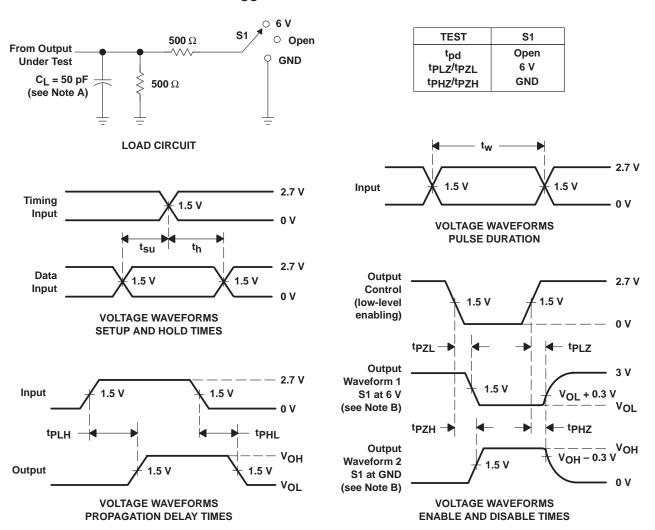
[†] This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 V \pm 0.2 V$

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated