SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

- UBT[™] (Universal Bus Transceiver)
 Combines D-Type Latches and D-Type
 Flip-Flops for Operation in Transparent,
 Latched, Clocked, or Clock-Enabled Mode
- State-of-the-Art Advanced BiCMOS
 Technology (ABT) Widebus™ Design for
 2.5-V and 3.3-V Operation and Low
 Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- High-Drive (-24/24 mA at 2.5-V and -32/64 mA at 3.3-V V_{CC})
- I_{off} and Power-Up 3-State Support Hot Insertion
- Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V
- Flow-Through Architecture Facilitates
 Printed Circuit Board Layout
- Distributed V_{CC} and GND Pin Configuration
 Minimizes High-Speed Switching Noise
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

NOTE: For tape and reel order entry:

The DGGR package is abbreviated to GR and the DGVR package is abbreviated to VR.

SN54ALVTH16601 . . . WD PACKAGE SN74ALVTH16601 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

	U		
OEAB [1		CLKENAB
LEAB [2	55	CLKAB
A1 [3	54] B1
GND [4	53] GND
A2 [5	52] B2
А3 [6	51] B3
v _{cc} [7	50] v _{cc}
A4 [8	49] B4
A5 [9	48] B5
A6 [10	47] B6
GND [11	46	GND
A7 [12	45] B7
A8 [13	44] B8
A9 [14	43] B9
A10 [15	42] B10
A11 [16	41] B11
A12 [17	40	B12
GND [18	39] GND
A13 [19	38	B13
A14 [20	37] B14
A15 [21	36	B15
v _{cc} [22	35] v _{cc}
A16 [23	34] B16
A17 [24	33	B17
GND [25	32] GND
A18 [26	31] B18
OEBA [27	30] CLKBA
LEBA [28	29	CLKENBA
'			

description

The 'ALVTH16601 devices are 18-bit universal bus transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The devices combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UBT and Widebus are trademarks of Texas Instruments Incorporated.

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

description (continued)

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. Output enable OEAB is active low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, CLKBA, and CLKENBA.

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

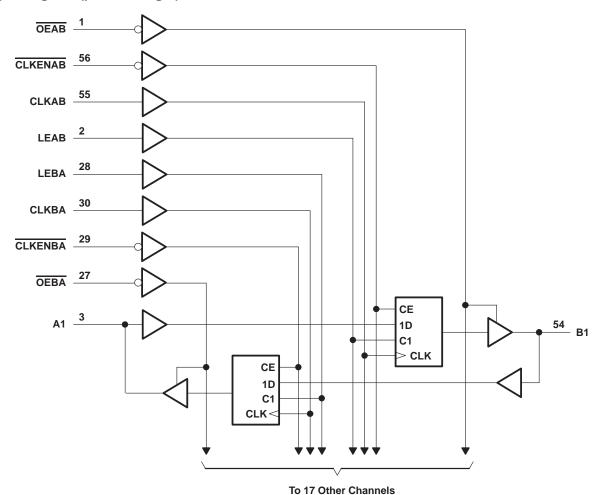
When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ALVTH16601 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH16601 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE[†]

	INPUTS						
CLKENAB	OEAB	LEAB	CLKAB	Α	В		
Х	Н	Χ	Χ	Χ	Z		
Х	L	Н	Χ	L	L		
Х	L	Н	Χ	Н	Н		
Н	L	L	Χ	Χ	в ₀ ‡		
Н	L	L	Χ	Χ	В ₀ ‡ В ₀ ‡		
L	L	L	\uparrow	L	L		
L	L	L	\uparrow	Н	Н		
L	L	L	L or H	Х	В ₀ ‡		


[†] A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\text{OEBA}}$, LEBA, CLKBA, and $\overline{\text{CLKENBA}}$.

[‡] Output level before the indicated steady-state input conditions were established

SN54ALVTH16601, SN74ALVTH16601 2.5-V/3.3-V 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES143A – SEPTEMBER 1998 – REVISED JULY 1999

logic diagram (positive logic)

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V _O (see Note 1)	-0.5 V to 7 V
Output current in the low state, IO: SN54ALVTH16601	96 mA
SN74ALVTH16601	128 mA
Output current in the high state, IO: SN54ALVTH16601	–48 mA
SN74ALVTH16601	
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DGV package	86°C/W
DL package	74°C/W
Storage temperature range, T _{sto}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54	ALVTH1	6601	SN74ALVTH16601			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		2.3		2.7	2.3		2.7	V
V _{IH}	High-level input voltage		1.7		7	1.7			V
V _{IL}	Low-level input voltage			Š	0.7			0.7	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
loн	High-level output current			1	-6			-8	mA
la.	Low-level output current			3	6			8	mA
lOL	Low-level output current; current duty cycle ≤ \$	50%; f≥1 kHz	Q	7	18			24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	Power-up ramp rate				200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH1	6601	SN74ALVTH16601			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vcc	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2		7	2			V
V _{IL}	Low-level input voltage			Š	0.8			0.8	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
IOH	High-level output current			1	-24			-32	mA
la	Low-level output current			2	24			32	mA
lor	Low-level output current; current duty cycle ≤	50%; f≥1 kHz	Q	7	48			64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
TA	Operating free-air temperature		- 55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

DA	DAMETED	TEST CO	NDITIONS	SN54	ALVTH1	6601	SN74	ALVTH1	6601	UNIT	
PAI	RAMETER	1551 00	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		$V_{CC} = 2.3 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	2		VCC-0	.2			
Vон		V _{CC} = 2.3 V	$I_{OH} = -6 \text{ mA}$	1.8						V	
		VCC = 2.3 V	$I_{OH} = -8 \text{ mA}$				1.8				
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OL} = 100 μA			0.2			0.2		
			I _{OL} = 6 mA			0.4					
VOL		V _{CC} = 2.3 V	$I_{OL} = 8 \text{ mA}$						0.4	V	
		VCC = 2.3 V	I _{OL} = 18 mA			0.5					
			I _{OL} = 24 mA						0.5		
V _{RST} ‡		V _{CC} = 2.7 V	$I_O = 1 \text{ mA},$ $V_I = V_{CC} \text{ or GND}$			0.55			0.55	٧	
	Control inputs	$V_{CC} = 2.7 \text{ V},$	V _I = V _{CC} or GND		3	¥ ±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V		24	10			10	μΑ	
Ц	A or B ports	V _{CC} = 2.7 V	V _I = 5.5 V		7	10			10		
			$V_I = V_{CC}$		5	1			1		
			V _I = 0	C	3	- 5			– 5		
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V	Q					±100	μΑ	
IBHL§		$V_{CC} = 2.3 \text{ V},$	V _I = 0.7 V		115			115		μΑ	
IBHH¶		$V_{CC} = 2.3 \text{ V},$	V _I = 1.7 V		-10			-10		μΑ	
IBHLO#	#	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	300			300			μΑ	
Івнно	I	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	-300			-300			μΑ	
lEX☆		$V_{CC} = 2.3 \text{ V},$	V _O = 5.5 V			125			125	μΑ	
IOZ(PU	//PD)□	$V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5} \text{ V}$ $V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} =$	to V _{CC} , don't care			±100			±100	μА	
		V _{CC} = 2.7 V,	Outputs high		0.04	0.1		0.04	0.1		
ICC		$I_{O} = 0$,	Outputs low		2.5	4.5		2.5	4.5	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.04	0.1		0.04	0.1		
Ci		$V_{CC} = 2.5 \text{ V},$	V _I = 2.5 V or 0		3			3		pF	
C _{io}		$V_{CC} = 2.5 \text{ V},$	$V_0 = 2.5 \text{ V or } 0$		7			7		pF	

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Data must not be loaded into the flip-flops/latches after applying power.

[§] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and _ then raising it to V_{IL} max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

[#] An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

[☆]Current into an output in the high state when V_O > V_{CC}

[□]High-impedance state during power up or power down

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

D/	DAMETER	TEST (CONDITIONS	SN54	ALVTH1	6601	SN74	ALVTH1	6601	UNIT	
PF	ARAMETER	1531 (CONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII	
٧ıK		$V_{CC} = 3 V$,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0	2		V _{CC} -0	.2			
VOH		VCC = 3 V	$I_{OH} = -24 \text{ mA}$	2						V	
		vCC = 3 v	$I_{OH} = -32 \text{ mA}$				2				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	$I_{OL} = 100 \mu A$			0.2			0.2		
			$I_{OL} = 16 \text{ mA}$						0.4		
\/o.			$I_{OL} = 24 \text{ mA}$			0.5				. ·	
VOL		V _{CC} = 3 V	$I_{OL} = 32 \text{ mA}$						0.5	V	
			$I_{OL} = 48 \text{ mA}$			0.55					
			$I_{OL} = 64 \text{ mA}$						0.55		
V _{RST} [‡]	ŧ	V _{CC} = 3.6 V	$I_O = 1 \text{ mA},$ $V_I = V_{CC} \text{ or GND}$			0.55			0.55	V	
	O- mtl in-mate	V _{CC} = 3.6 V,	V _I = V _{CC} or GND		4	±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V		7	10			10		
lį			V _I = 5.5 V		5	10			10	μΑ	
	A or B ports	V _{CC} = 3.6 V	$V_I = V_{CC}$		3	1			1		
			V _I = 0	Q		– 5			– 5		
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V						±100	μΑ	
I _{BHL} §		$V_{CC} = 3 V$,	V _I = 0.8 V	75			75			μΑ	
IBHH		$V_{CC} = 3 V$,	V _I = 2 V	-75			-75			μΑ	
IBHLO	#	V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	500			500			μΑ	
IBHHC	اار	V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	-500			-500			μΑ	
lEX☆		$V_{CC} = 3 V$,	V _O = 5.5 V			125			125	μΑ	
I _{OZ(Pl}	J/PD)□	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{OE}$ $V_{I} = \text{GND or } V_{CC}, \overline{OE}$	V to V _{CC} , = don't care			±100			±100	μΑ	
		V _{CC} = 3.6 V,	Outputs high		0.06	0.1		0.06	0.1		
ICC		$I_{O} = 0$,	Outputs low		3.5	5		3.5	5	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.06	0.1		0.06	0.1		
∆ICC◊		$V_{CC} = 3 \text{ V to } 3.6 \text{ V, Or}$ Other inputs at V_{CC} or	ne input at V _{CC} – 0.6 V, GND			0.4			0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0		3			3		pF	
Cio		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		7			7		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ Data must not be loaded into the flip-flops/latches after applying power.

[§] The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to V_{IL} max.

The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to $V_{\mbox{\scriptsize IH}}$ min.

[#] An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least I_{BHHO} to switch this node from high to low.

[☆]Current into an output in the high state when V_O > V_{CC}

[☐] High-impedance state during power up or power down

[♦] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

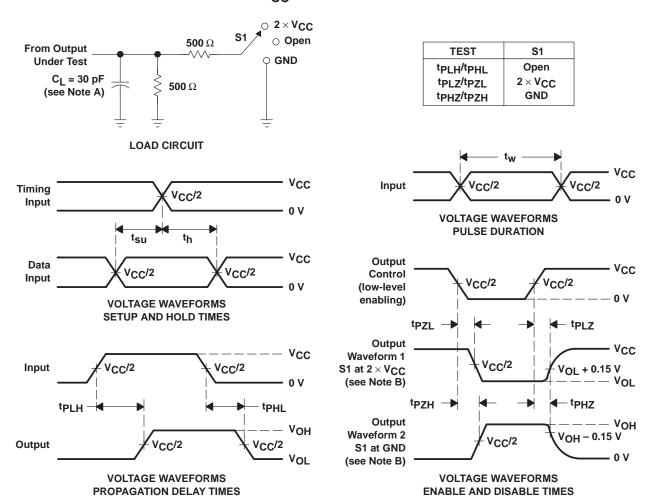
				SN54ALVT	H16601	SN74ALVT	H16601	UNIT
				MIN	MAX	MIN	MAX	UNII
fclock	Clock frequency				150		150	MHz
	Pulse duration	LE high		1.8		1.8		20
t _W	Pulse duration	CLK high or low		2.3		2.3		ns
		A B - (0 ()	Data high	4		4		
	t Saturatima	A or B before CLK↑	Data low	5.2		5.2		
١.		A or B before LE↓	CLK high	0.7	FI	0.7		
t _{su}	Setup time		CLK low	0.9	TY.	0.9		ns
			Data high	1.7,0		1.7		
	Setup time	CLKEN before CLK↑	Data low	2.3		2.3		
		A B - ft OLK^	Data high	0.5		0.5		
		A or B after CLK↑	Data low	0.5		0.5		1
١.	Hillen	A D . 6 1 5 1	CLK high	2.3		2.3		
t _h	Hold time	A or B after LE↓	CLK low	2.4		2.4		ns
			Data high	0.5		0.5		
		CLKEN after CLK↑	Data low	0.5		0.5		

timing requirements over recommended operating free-air temperature range, V $_{CC}$ = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

				SN54ALVTI	H16601	SN74ALVT	H16601	UNIT	
				MIN	MAX	MIN	MAX	UNII	
fclock	Clock frequency				150		150	MHz	
	D. Inc. London	LE high	LE high			1.8			
t _W	Pulse duration	CLK high or low		2.3		2.3		ns	
		A D - (O 1/4)	Data high	2.4		2.4			
		A or B before CLK↑	Data low	3.8		3.8		ns	
l	Setup time	A or B before LE↓	CLK high	1	EN	1			
t _{su}			CLK low	0.6	Ty.	0.6			
			Data high	1.4,		1.4			
		CLKEN before CLK↑	Data low	1.9		1.9			
		A B - 6 O K^	Data high	0.5		0.5			
		A or B after CLK↑	Data low	0.5		0.5			
1.	Held time	A D -# E	CLK high	2		2			
th	Hold time	A or B after LE↓	CLK low	2.3		2.3		ns	
			Data high	0.6		0.6			
		CLKEN after CLK↑	Data low	0.5		0.5			

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

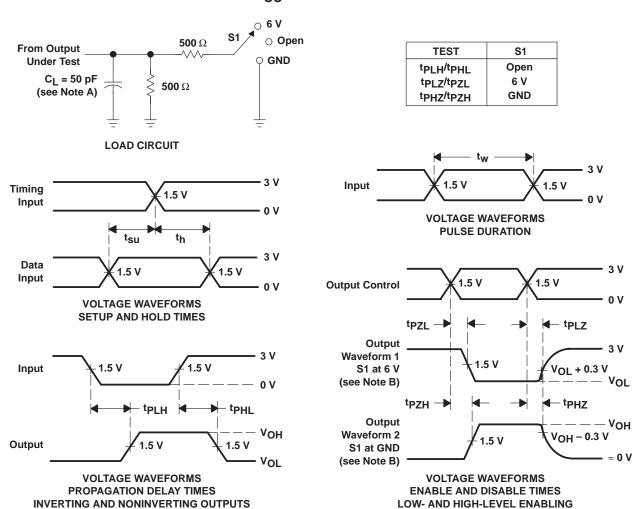

PARAMETER	FROM	то	SN54ALV	ГН16601	SN74ALVT	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
f _{max}			150		150		MHz
t _{PLH}	B or A	A or B	1.1	<u>4</u> .1	1.1	4.1	ns
t _{PHL}		A OF B	1.6	4.8	1.6	4.8	115
t _{PLH}	LEDA or LEAD	A or B	2.1	5	2.1	5	ns
t _{PHL}	LEBA or LEAB	AOID	2.4	5.4	2.4	5.4	115
^t PLH	CLKBA or CLKAB	A or B	2	5	2	5	ns
^t PHL	CLNBA OF CLNAB	AOIB	2.5	5.9	2.5	5.9	115
^t PZH	OEBA or OEAB	A or B	1.2	4.8	1.2	4.8	ns
tpzL	OEBA OI OEAB	AUID	1	4.6	1	4.6	110
^t PHZ	OEBA or OEAB	A or B	1.2	5.2	1.2	5.2	ns
t _{PLZ}	OEBA OF OEAB	A 01 B	1	3.9	1	3.9	110

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVT	H16601	SN74ALVTH16601		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
fmax			150		150		MHz
t _{PLH}	B or A	A or B	1.4	3 .9	1.4	3.9	ns
t _{PHL}		AOIB	1.1	3.9	1.1	3.9	115
t _{PLH}	15DA15AD	A or B	2	4.6	2	4.6	no
tPHL	LEBA or LEAB	AOID	2.1	4.6	2.1	4.6	ns
t _{PLH}	CLKBA or CLKAB	r CLKAB A or B	1.9	4.5	1.9	4.5	no
t _{PHL}	CLNBA OF CLNAB	AUID	2.2	4.6	2.2	4.6	ns
^t PZH	OEBA or OEAB	A or B	Q 1	4.2	1	4.2	ns
tPZL	OEBA OI OEAB	AOIB	1	4.4	1	4.4	115
t _{PHZ}	OEBA or OEAB	A or B	1.8	5.3	1.8	5.3	ns
t _{PLZ}	OEBA OI OEAB	AOID	1.7	4.6	1.7	4.6	115

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 V \pm 0.2 V$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2.5$ ns, $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated