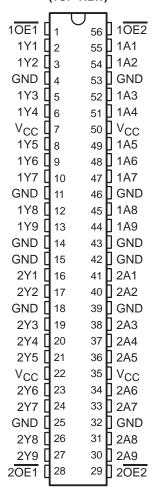
SCBS218C - JUNE 1992 - REVISED MAY 1997


- Members of the Texas Instruments
 Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABT16825 are 18-bit buffers and line drivers designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. These devices can be used as two 9-bit buffers or one 18-bit buffer. They provide true data.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1 or OE2) input is high, all nine affected outputs are in the high-impedance state.

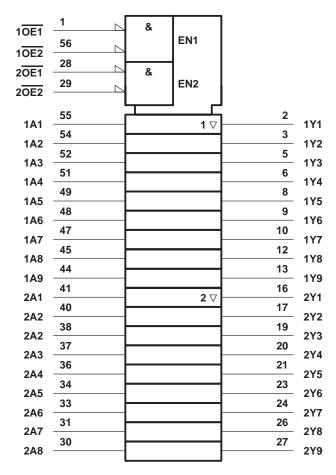
SN54ABT16825 . . . WD PACKAGE SN74ABT16825 . . . DGG OR DL PACKAGE (TOP VIEW)

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16825 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16825 is characterized for operation from –40°C to 85°C.

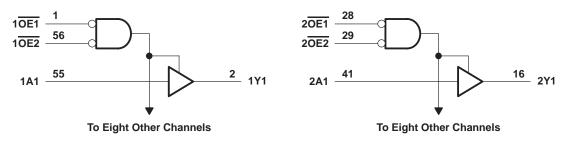
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.



SCBS218C - JUNE 1992 - REVISED MAY 1997

FUNCTION TABLE (each 9-bit section)


	INPUTS	OUTPUT	
OE1	OE2	Α	Υ
L	L	L	L
L	L	Н	Н
Н	X	Χ	Z
Х	Н	Χ	Z

logic symbol†

 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS218C - JUNE 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, I _O : SN54ABT16825	96 mA
SN74ABT16825	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

				SN54ABT16825		SN74ABT16825	
			MIN	MAX	MIN	MAX	UNIT
V _{CC} Supply voltage				5.5	4.5	5.5	V
V _{IH} High-level input voltage					2		V
V _{IL} Low-level input voltage				0.8		0.8	V
VI	Input voltage	0	Vcc	0	VCC	V	
IOH	H High-level output current			-24		-32	mA
lOL	Low-level output current					64	mA
Δt/Δν	Input transition rise or fall rate	Control pins	200	4		4	ns/V
ΔυΔν	Data pins		Q.	10		10	115/ V
Δt/ΔV _{CC}	Power-up ramp rate		200		200	·	μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN54ABT16825, SN74ABT16825 18-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS218C - JUNE 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

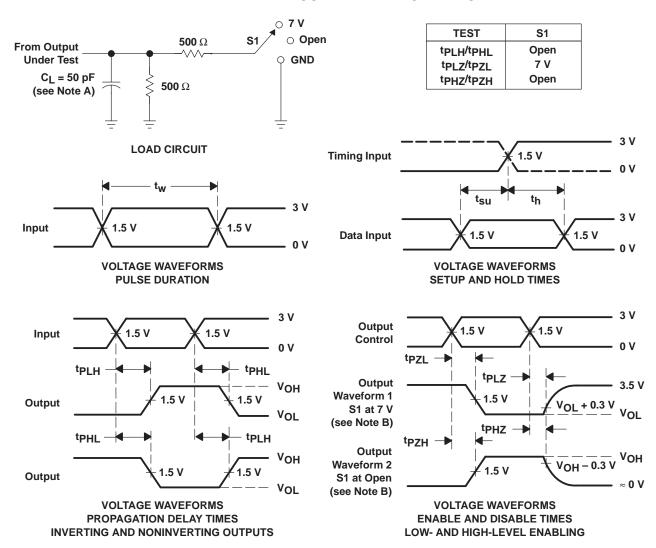
PARAMETER		TEST CONDITIONS		T _A = 25°C			SN54ABT16825		SN74ABT16825		UNIT
				MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNII
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		
\/~		V _{CC} = 5 V,	$I_{OH} = -3 \text{ mA}$	3			3		3		V
VOН		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				l v
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		
VOL		V _{CC} = 4.5 V	$I_{OL} = 48 \text{ mA}$			0.55		0.55			V
VOL		VCC = 4.5 V	$I_{OL} = 64 \text{ mA}$			0.55*				0.55	V
V _{hys}					100						mV
Ц		$V_{CC} = 0 \text{ to } 5.5$ $V_{I} = V_{CC} \text{ or } G$				±1		±1		±1	μΑ
lozpu [‡]	$V_{CC} = 0 \text{ to } 2.1 \text{ V},$ $V_{O} = 0.5 \text{ V to } 2.7 \text{ V}, \overline{OE} = X$		V, 2.7 V, OE = X			±50		±50		±50	μΑ
l _{OZPD} ‡	:	$V_{CC} = 2.1 \text{ V to } 2.0 \text{ V}_{O} = 0.5 \text{ V to } 2.0 \text{ V}_{O} = 0.0 $	0, 2.7 V, OE = X			±50	.0	±50		±50	μА
lozh	OZH $V_{CC} = 2.1 \text{ V} \text{ to } 5.5 \text{ V}, \\ V_{O} = 2.7 \text{ V}, \text{ OE } \ge 2 \text{ V}$				10	200	10		10	μΑ	
lozL		$V_{CC} = 2.1 \text{ V} \text{ to}$ $V_{O} = 0.5 \text{ V}, \text{ OE}$				-10	Q.	-10		-10	μΑ
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ
ICEX	Outputs high	$V_{CC} = 5.5 \text{ V},$	V _O = 5.5 V			50		50		50	μΑ
ΙΟ§		$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.5 \text{ V}$	-50	-100	-180	-50	-180	-50	-180	mA
	Outputs high	.,				2		2		2	
ICC	Outputs low	V _{CC} = 5.5 V, I _O = 0, V _I = V _{CC} or GND				32		32		32	mA
	Outputs disabled					2		2		2	
∆ICC¶		V _{CC} = 5.5 V, C Other inputs at	one input at 3.4 V, V _{CC} or GND			1.5		1.5		1.5	mA
Ci		$V_{ } = 2.5 \text{ V or } 0.0$	5 V		3						pF
Co		$V_0 = 2.5 \text{ V or } 0$	0.5 V		7.5						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			SN54ABT16825		SN74ABT16825		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A	Y	1	1.9	3.6	1	4.1	1	3.9	ns
^t PHL			1	2.1	3.9	1 (4.7	1	4.4	
^t PZH	ŌĒ	V	1	2.8	5.5	1/2	6.4	1	6.1	ns
t _{PZL}		Ť	1	2.8	5.4	$\Im_{j_{0}}$	6.3	1	6	
^t PHZ	ŌĒ	Y	2.4	4.5	6.8	2.4	7.1	2.4	6.9	ns
t _{PLZ}			1.6	3.7	6.2	1.6	7.6	1.6	6.6	115

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.


[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This parameter is characterized, but not production tested.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

 $[\]P$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V $_{
m CC}$ or GND.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated