SCES079E - JULY 1996 - REVISED DECEMBER 1998

State-of-the-Art Advanced BiCMOS
Technology (ABT) <i>Widebus</i> ™ Design for
2.5-V and 3.3-V Operation and Low Static
Power Dissipation

- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Power Off Disables Outputs, Permitting Live Insertion
- High-Impedance State During Power Up and Power Down Prevents Driver Conflict
- Uses Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Output Ports Have Equivalent 30-Ω Series Resistors, So No External Resistors Are Required
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model; and Exceeds 1000 V Using Charged-Device Model, Robotic Method
- Flow-Through Architecture Facilitates Printed Circuit Board Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

NOTE: For order entry: The DGG package is abbreviated to G, and the DGV package is abbreviated to V.

description

The 'ALVTH162827 devices are 20-bit buffers/line drivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54ALVTH162827WD PACKAGE												
SN74ALVTH162827	. DGG, DGV, OR DL PACKAGE											
(Т	OP VIEW)											

ONE 4 AL VELLA 0000

1			1
10E1		56] 1 <u>0E</u> 2
1Y1[2	55] 1A1
1Y2[3	54] 1A2
GND [4	53	GND
1Y3[5	52] 1A3
1Y4[6	51] 1A4
V _{CC} [7	50] v _{cc}
1Y5[8	49] 1A5
1Y6[9	48] 1A6
1Y7[10	47] 1A7
GND [11	46] GND
1Y8[12	45	1A8
1Y9[13	44] 1A9
1Y10[14	43] 1A10
2Y1[15	42	2A1
2Y2[16	41	2A2
2Y3[17	40	2A3
GND [18	39] GND
2Y4[19	38	2A4
2Y5[20	37	2A5
2Y6	21	36	2A6
Vcc	22	35	V _{CC}
2Y7	23	34	2A7
2Y8	24	33	2A8
GND]	25	32	GND
2Y9	26	31	2A9
2Y10	27	30	2 <u>A10</u>
20E1	28	29	20E2

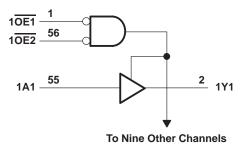
SN54ALVTH162827, SN74ALVTH162827 2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCES079E – JULY 1996 – REVISED DECEMBER 1998

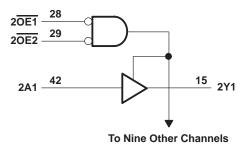
description (continued)

The devices are composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1\overline{OE1}$ and $1\overline{OE2}$, or $2\overline{OE1}$ and $2\overline{OE2}$) inputs must be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

All outputs are designed to sink up to 12 mA, and include equivalent $30-\Omega$ resistors to reduce overshoot and undershoot.


Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.


The SN54ALVTH162827 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH162827 is characterized for operation from -40°C to 85°C.

. ((each 10-bit section)											
	OUTPUT											
OE1	OE2	Α	Y									
L	L	L	L									
L	L	Н	н									
н	Х	Х	Z									
Х	Н	Х	Z									

FUNCTION TABLE

logic diagram (positive logic)

SCES079E - JULY 1996 - REVISED DECEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	
Output current in the low state, I _O : SN54ALVTH162827	96 mA
SN74ALVTH162827	128 mA
Output current in the high state, I _O : SN54ALVTH162827	–48 mA
SN74ALVTH162827	–64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ _{JA} (see Note 2): DGG package	
DGV package	
DL package	
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V ± 0.2 V (see Note 3)

			SN54A	LVTH16	62827	SN74ALVTH162827			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		2.3		2.7	2.3		2.7	V
VIH	High-level input voltage		1.7		h	1.7			V
VIL	Low-level input voltage			N.	0.7			0.7	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
ЮН	High-level output current			1	-6			-8	mA
IOL	Low-level output current			2	8			12	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	0		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES079E - JULY 1996 - REVISED DECEMBER 1998

recommended operating conditions, V_{CC} = 3.3 V \pm 0.3 V (see Note 3)

			SN54A	LVTH16	62827	SN74ALVTH162827		UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2		h	2			V
VIL	Low-level input voltage			Lin .	0.8			0.8	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
ЮН	High-level output current			7	-8			-12	mA
IOL	Low-level output current			22	8			12	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	0		10			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200			200			μs/V
Т _А	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas instruments reserves the right to change or discontinue these products without notice.

SCES079E - JULY 1996 - REVISED DECEMBER 1998

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54	SN54ALVTH162827			SN74ALVTH162827			
P	ARAMEIER	TEST C	UNDITION5	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
VIK		V _{CC} = 2.3 V,	lj = -18 mA			-1.2			-1.2	V	
		V_{CC} = 2.3 V to 2.7 V,	I _{OH} = -100 μA	V _{CC} -0	V _{CC} -0.2		V _{CC} -0	.2			
۷он		V _{CC} = 2.3 V	I _{OH} = -6 mA	1.7						V	
		VCC = 2.0 V	I _{OH} = -8 mA				1.7				
		V_{CC} = 2.3 V to 2.7 V,	I _{OL} = 100 μA			0.2			0.2		
VOL		V _{CC} = 2.3 V	I _{OL} = 8 mA			0.7				V	
		V(() = 2.0 V	I _{OL} = 12 mA						0.7		
Contr	Control inputs	V _{CC} = 2.7 V,	$V_I = V_{CC}$ or GND			±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			10			10		
lj –			V _I = 5.5 V			10			10	μΑ	
	Data inputs	Data inputs $V_{CC} = 2.7 V$	$V_I = V_{CC}$			\$ 1			1		
			V ₁ = 0		1	-5			-5		
loff		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V		P	7			±100	μΑ	
IBHL [‡]	ŧ	V _{CC} = 2.3 V,	V _I = 0.7 V		115			115		μΑ	
IВНН	§	V _{CC} = 2.3 V,	V _I = 1.7 V		<u>3</u> –10			-10		μΑ	
BHLC	P	V _{CC} = 2.7 V,	$V_I = 0$ to V_{CC}	300	Ç,		300			μΑ	
IBHH		V _{CC} = 2.7 V,	$V_I = 0$ to V_{CC}	-300			-300			μΑ	
I _{EX}		V _{CC} = 2.3 V,	V _O = 5.5 V			125			125	μA	
IOZ(P	PU/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_O = 0.5 \text{ V}$ V _I = GND or V _{CC} , OE =	/ to V _{CC} , don't care			±100			±100	μA	
IOZH		V _{CC} = 2.7 V	V _O = 2.3 V, V _I = 0.7 V or 1.7 V			5			5	μA	
IOZL		V _{CC} = 2.7 V	V _O = 0.5 V, V _I = 0.7 V or 1.7 V			-5			-5	μA	
		V _{CC} = 2.7 V,	Outputs high		0.04	0.1		0.04	0.1		
ICC		$I_{O} = 0,$	Outputs low		2.3	5		2.3	5	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.04	0.1		0.04	0.1		
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0		3.5			3.5		pF	
Co		V _{CC} = 2.5 V,	V _O = 2.5 V or 0		6			6		pF	

[†] All typical values are at V_{CC} = 2.5 V, T_A = 25°C.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

S The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

I Current into an output in the high state when $V_O > V_{CC}$

*High-impedance state during power up or power down

SCES079E - JULY 1996 - REVISED DECEMBER 1998

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54A	SN54ALVTH162827			SN74ALVTH162827			
۲	ARAMEIER	IESI	JUNDITIONS	MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		$ \begin{array}{ c c c c c c c c } \hline \mbox{min typt mAx} & \mbox{min typt mAx} & \mbox{min typt mAx} \\ \hline \mbox{min typt mAx} & min typt m$	V								
VOH		$V_{CC} = 3 V \text{ to } 3.6 V,$	I _{OH} = -100 μA	V _{CC} –0.	2		V _{CC} -0.	2			
			I _{OH} = -8 mA	2						V	
		VCC = 3 V	TEST CONDITIONS MIN TYP1 MAX MIN TYP1 MAX I = -18 mA -1.2 1.2 -1.2 1.2 1.2 -1.2 1.2								
		$V_{CC} = 3 V \text{ to } 3.6 V,$	l _{OL} = 100 μA			0.2			0.2		
VOL		V00 - 3 V	I _{OL} = 8 mA			0.8				V	
		VCC = 3 V	I _{OL} = 12 mA						0.8		
	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND			±1			±1		
	Control Inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	VI = 5.5 V			10			10		
Ц			V _I = 5.5 V			10			10	μΑ	
	Data inputs	V _{CC} = 3.6 V	$V_I = V_{CC}$			1			1		
			$V_{I} = 0$			<u> </u>			-5		
loff		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V						±100	μΑ	
IBHL [‡]	İ.	V _{CC} = 3 V,	V _I = 0.8 V	75	4		75			μΑ	
I _{BHH}	§	V _{CC} = 3 V,	V _I = 2 V	-75	5		-75			μA	
BHLC	P	V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	500	50		500			μA	
IBHH	0#	V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	-500)		-500			μΑ	
I _{EX}		V _{CC} = 3 V,	V _O = 5.5 V	Q		125			125	μΑ	
IOZ(P	PU/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{0.5}$ V _I = GND or V _{CC} , OE	V to V _{CC} , = don't care			±100			±100	μA	
IOZH		V _{CC} = 3.6 V				5			5	μΑ	
IOZL		V _{CC} = 3.6 V				-5			-5	μΑ	
		Vcc = 3.6 V.	Outputs high		0.07	0.1		0.07	0.1		
ICC		$I_{O} = 0,$	Outputs low		3.2	5.5		3.2	5.5	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.07	0.1		0.07	0.1		
]	$V_{CC} = 3 V \text{ to } 3.6 V$, Or Other inputs at V_{CC} or				0.4			0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0		3.5			3.5		pF	
Co		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		6			6		pF	

[†] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

[‡]The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. IBHL should be measured after lowering V_{IN} to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_BHLO to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

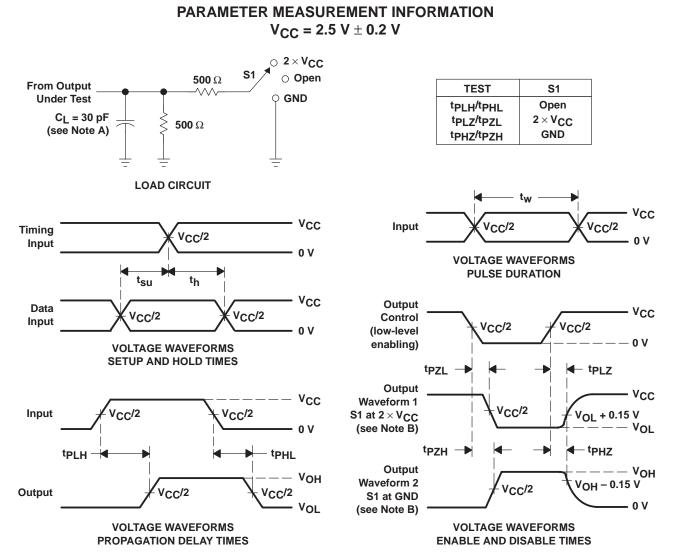
I Current into an output in the high state when $V_O > V_{CC}$

☆High-impedance state during power up or power down

 \Box This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ALVTH162827, SN74ALVTH162827 2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCES079E – JULY 1996 – REVISED DECEMBER 1998

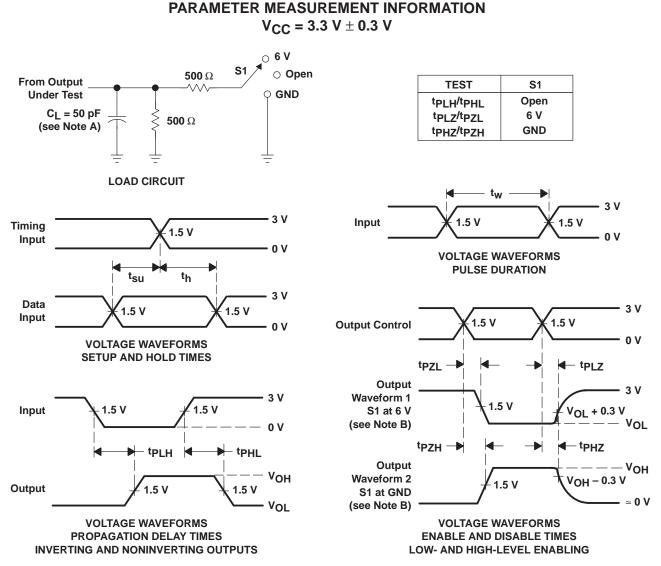
switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	SN54ALVTH	1162827	SN74ALVTH	1162827	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
^t PLH	٨	V	1.7	4.1	1.7	4.1	ns
^t PHL	A		1.6	4	1.6	4	115
^t PZH		V	2.1	4.8	2.1	4.8	ns
^t PZL	OE		1.9	4.8	1.9	4.8	115
^t PHZ	ŌĒ	V	2,4	6	2.4	6	ns
^t PLZ	UE		2 1.7	5	1.7	5	115

switching characteristics over recommended operating free-air temperature range, CL = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM TO		SN54ALVTH16	2827	SN74ALVTH	162827	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
^t PLH	A	v	1	3.9	1	3.9	ns
^t PHL		1	1.5 4	3.7	1.5	3.7	115
^t PZH	ŌĒ	v	1	5.6	1	5.6	ns
^t PZL		I	1.5	4.1	1.7	4.1	115
^t PHZ	ŌĒ	v	3.6	6.3	3.6	6.3	ns
^t PLZ	UE	1	2 1.7	5.1	1.7	5.1	115

SCES079E - JULY 1996 - REVISED DECEMBER 1998


NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES079E - JULY 1996 - REVISED DECEMBER 1998

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated