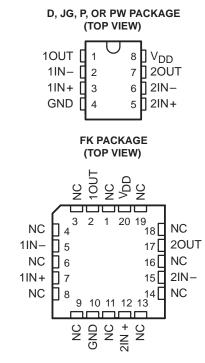
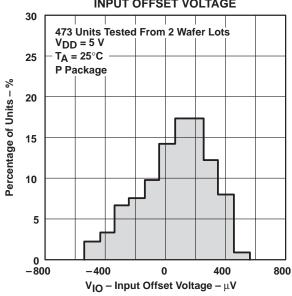
SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994


- Trimmed Offset Voltage: TLC277 . . . 500 μV Max at 25°C,
 - V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically
 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:
 - 0°C to 70°C . . . 3 V to 16 V
 - -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance . . . $10^{12} \Omega$ Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-in Latch-Up Immunity

description

The TLC272 and TLC277 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.


These devices use Texas instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the

NC - No internal connection

DISTRIBUTION OF TLC277 INPUT OFFSET VOLTAGE

low-cost TLC272 (10 mV) to the high-precision TLC277 (500 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

LinCMOS is a trademark of Texas Instruments Incorporated.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

AVAILABLE OPTIONS

			PAC	KAGED DEVI	CES		CHIP
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW)	FORM (Y)
0°C to 70°c	500 μV 2 mV 5 mV 10mV	TLC277CD TLC272BCD TLC272ACD TLC272CD	_ _ _ _	_ _ _ _	TLC277CP TLC272BCP TLC272ACP TLC272CP	— — — TLC272CPW	— — — TLC272Y
-40°C to 85°C	500 μV 2 mV 5 mV 10 mV	TLC277ID TLC272BID TLC272AID TLC272ID	 	_ _ _ _	TLC277IP TLC272BIP TLC272AIP TLC272IP	1111	1111
-55°C to 125°C	500 μV 10 mV	TLC277MD TLC272MD	TLC277MFK TLC272MFK	TLC277MJG TLC272MJG	TLC277MP TLC272MP		_

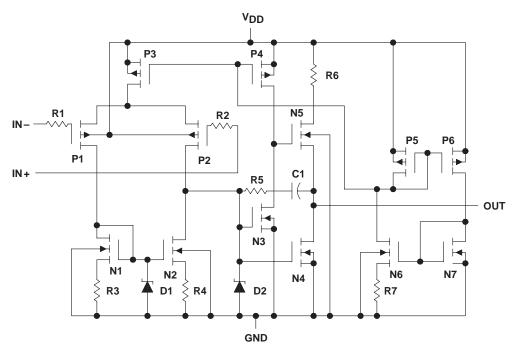
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

description (continued)

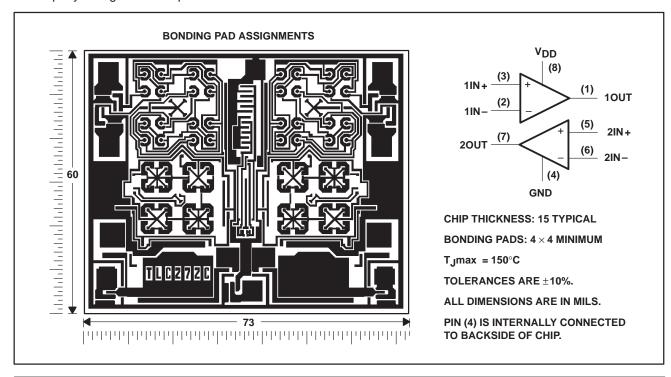
In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.


The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

equivalent schematic (each amplifier)

TLC272Y chip information

This chip, when properly assembled, displays characteristics similar to the TLC272C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)
Differential input voltage, V _{ID} (see Note 2)±V _{DD}
Input voltage range, V _I (any input)
Input current, I _I ±5 mA
output current, I _O (each output)±30 mA
Total current into V _{DD}
Total current out of GND
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited
Continuous total dissipation
Operating free-air temperature, T _A : C suffix
I suffix
M ##:
M suffix−55°C to 125°C
M Sumix
Storage temperature range

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \leq 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A
PW	525 mW	4.2 mW/°C	336 mW	N/A	N/A

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}		3	16	4	16	4	16	V
Occurred the second sec	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	
Operating free-air temperature, TA		0	70	-40	85	-55	125	°C

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 5 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	T _A †	TLC272 TLC272	C, TLC2 BC, TLC		UNIT
						MIN	TYP	MAX	
		TLC272C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		11.02720	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	\/
		TLC272AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
V	Input offset voltage	TLGZ7ZAG	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	input onset voltage	TLC272BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		230	2000	
		TLOZIZBO	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	μV
		TLC277C	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μν
		1102770	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1500	
α_{VIO}	Temperature coefficient of input of	offset voltage			25°C to 70°C		1.8		μV/°C
l.a	Input offeet ourrent (see Note 4)		Vo - 2.5.V	V _{IC} = 2.5 V	25°C		0.1		- n A
110	Input offset current (see Note 4)		$V_0 = 2.5 \text{ V},$	AIC = 5.2 A	70°C		7	300	pΑ
1	Input high current (age Note 4)		V= -2.5.V	V 25V	25°C		0.6		- A
IB	Input bias current (see Note 4)		$V_0 = 2.5 \text{ V},$	$V_{IC} = 2.5 V$	70°C		40	600	pΑ
						-0.2	-0.3		
					25°C	to 4	to		V
VICR	Common-mode input voltage ran (see Note 5)	ge				-0.2	4.2		
	(300 14010 3)			Full range	-0.2 to			V	
					ŭ	3.5			
					25°C	3.2	3.8		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	5	23		
A _{VD}	Large-signal differential voltage a	mplification	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	0°C	4	27		V/mV
					70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		0°C	60	84		dB
					70°C	60	85		
	0				25°C	65	95		
ksvr		pply-voltage rejection ratio DD ^{/∆V} IO)	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 V$	0°C	60	94		dB
	ران · · · الان · · · · · · · · · · · · · · · · · · ·				70°C	60	96		
			Vo - 2.5.V	\/:o = 5\/	25°C		1.4	3.2	
IDD	Supply current (two amplifiers)		V _O = 2.5 V, No load	$V_{IC} = 5 V$	0°C		1.6	3.6	mA
					70°C		1.2	2.6	

[†] Full range is 0°C to 70°C.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, $V_{DD} = 10 \text{ V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		T _A †	TLC272 TLC272			UNIT
		_				MIN	TYP	MAX	
		TLC272C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLUZIZU	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	m∨
		TLC272AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
V _{IO}	Input offset voltage	TLUZIZAU	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
1 10	input onset voltage	TLC272BC	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		290	2000	
		TLOZIZBO	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	μV
		TLC277C	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		250	800	μν
		1202770	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1900	
α_{VIO}	Temperature coefficient of input of	ffset voltage			25°C to 70°C		2		μV/°C
1.0	Input offset current (see Note 4)		V _O = 5 V,	V _{IC} = 5 V	25°C		0.1		pА
lio	input onset current (see Note 4)		VO = 5 V,	AIC = 2 A	70°C		7	300	PΑ
1	Input bias current (see Note 4)		V _O = 5 V,	V _{IC} = 5 V	25°C		0.7		pА
IB	input bias current (see Note 4)		ν _O = 5 ν,	AIC = 2 A	70°C		50	600	PΑ
						-0.2	-0.3		
					25°C	to 9	to 9.2		V
VICR	Common-mode input voltage range (see Note 5)					-0.2	9.2		
	(300 14010 3)			Full range	-0.2 to			V	
					Ŭ	8.5			
					25°C	8	8.5		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage a	mplification	$V_0 = 1 V \text{ to } 6 V$	$R_L = 10 \text{ k}\Omega$	0°C	7.5	42		V/mV
					70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		0°C	60	88		dB
					70°C	60	88		
	0 - 1 - 10 - 1 - 2				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	0°C	60	94		dB
	יטטיביוט/				70°C	60	96		
			Vo - 2.5.V		25°C		1.9	4	
I _{DD}	Supply current (two amplifiers)		V _O = 2.5 V, No load	$V_{IC} = 5 V$,	0°C		2.3	4.4	mA
					70°C		1.6	3.4	

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 5 V (unless otherwise noted)

No		PARAMETER		TEST COND	TIONS	τ _A †		2I, TLC2 2BI, TL0		UNIT
No N						^	MIN	TYP	MAX	
No supply offset voltage			TI 00701	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
No N			I ILC2/2I			Full range			13	\ /
No N			TI 007041	VO = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mv
TLC272Bl NG = 1.4 V, NG = 0.4 NG NG = 1.4 V, N		land offertualteen	TLC2/2AI			Full range			7	
No continue	VIO	input offset voltage	TI 0070DI	VO = 1.4 V,	V _{IC} = 0,	25°C		230	2000	
Carron			I LC2/2BI					3500	\/	
No common-mode input voltage			TI 00771	VO = 1.4 V,	V _{IC} = 0,	25°C		200	500	μν
No common-mode input voltage No common-mode rejection ratio			ILCZIII		$R_L = 10 \text{ k}\Omega$	Full range			2000	
Input offset current (see Note 4)	α_{VIO}	Temperature coefficient of input of	offset voltage					1.8		μV/°C
Input bias current (see Note 4) V _O = 2.5 V, V _{IC} = 2.5 V 25°C 0.6 0.	1.0	Input offset surrent (see Note 4)		Va - 2.5.V	\\:\c_2\i\	25°C		0.1		n ^
The common mode input voltage range (see Note 4) Vo = 2.5 V, Vo =	IIO	input offset current (see Note 4)		VO = 2.5 V,	AIC = 5.2 A	85°C		24	15	рA
V _{ICR} Common-mode input voltage range (see Note 5) V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} = 100 mV, R _L = 10 kΩ 25°C 3.2 3.8 V _L V _{ID} V _{ID} = 100 mV, R _L = 10 kΩ 25°C 5 23 V _L V _{ID} V _{ID} V _{ID} = 100 mV, R _L = 10 kΩ 25°C 5 23 V _L V _{ID}	1	Input bigg ourrent (ago Note 4)		V = - 2.5.V	V 25V	25°C		0.6		- A
$V_{ICR} \begin{array}{c} \text{Common-mode input voltage range} \\ \text{(see Note 5)} \end{array} \begin{array}{c} \text{Common-mode input voltage range} \\ \text{(see Note 5)} \end{array} \begin{array}{c} \text{Common-mode input voltage} \end{array} \begin{array}{c} \text{V} \\ \text{V} \\ \text{V} \\ \text{VOH} \end{array} \begin{array}{c} \text{High-level output voltage} \end{array} \begin{array}{c} \text{VID} = 100 \text{ mV}, \\ \text{VID} = 100 \text{ mV}, \\ \text{VID} = 100 \text{ mV}, \\ \text{RL} = 10 \text{ k}\Omega \\ \hline \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ 3.2 \\ 85^{\circ}\text{C} \end{array} \begin{array}{c} 3.3 \\ 3.8 \\ \hline \end{array} \end{array} \begin{array}{c} \text{V} \\ \text{V} \\ \text{Migh-level output voltage} \end{array} \begin{array}{c} \text{VID} = 100 \text{ mV}, \\ \text{VID} = -100 \text{ mV}, \\ \text{IOL} = 0 \end{array} \begin{array}{c} \text{Common-mode input voltage} \end{array} \begin{array}{c} \text{VID} = 100 \text{ mV}, \\ \text{RL} = 10 \text{ k}\Omega \\ \hline \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ 3.2 \\ 85^{\circ}\text{C} \end{array} \begin{array}{c} 3.3 \\ 3.8 \\ \hline \end{array} \begin{array}{c} \text{MIV} \\ \text{MIV} \end{array} \begin{array}{c} \text{MIV} \\ \text{MIV} \end{array} \begin{array}{c} \text{MIV} \\ \text{MIV} \end{array} \begin{array}{c} \text{Common-mode input voltage} \end{array} \begin{array}{c} \text{MIV} \\ \text{MIV} \end{array} \begin{array}{c} \text{MIV} \\ \text{MIV} \end{array} \begin{array}{c} \text{Common-mode input voltage} \end{array} \begin{array}{c} \text{MIV} \\ \text{MIV} \end{array} \begin{array}{c} \text{MIV} \\ \text{RL} = 10 \text{ k}\Omega \\ \text{RC} \end{array} \begin{array}{c} \text{Common-mode input voltage} \end{array} \begin{array}{c} \text{MIV} \\ \text{MIV} $	I 'IB	input bias current (see Note 4)		VO = 2.5 V,	AIC = 5.2 A	85°C		200	35	рА
Vocation							-0.2	-0.3		
$\begin{array}{c} V_{ICR} \\ (\text{see Note 5}) \\ \hline \\ V_{OH} \\ \hline \\ V_{OH} \\ \hline \\ V_{OL} \\ \hline \\ V_{OL$						25°C				V
$V_{OH} \text{High-level output voltage} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 3.2 3.8 \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 3.2 3.8 \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 3 3.8 \qquad V_{ID} = 100 \text{mV}, I_{OL} = 0 \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 50 \qquad 100 \text{mV}$ $V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}, I_{OL} = 0 \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 0 50 \qquad 100 \text{mV}$ $R_L = 10 \text{k}\Omega \qquad 25^{\circ}\text{C} \qquad 0 0 0 0 0 0 0 0 0 0$	VICR		ige					4.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(see Note 5)				Full range				V
$\begin{array}{c} V_{OH} \\ V_{OL} \\ V_{OL$					I un range				V	
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 85^{\circ}\text{C} & 3 & 3.8 \\ \hline 25^{\circ}\text{C} & 0 & 50 \\ \hline -40^{\circ}\text{C} & 0 & 50 \\ \hline 85^{\circ}\text{C} & 0 & 50 \\ \hline 85^{\circ}\text{C} & 0 & 50 \\ \hline \end{array} \qquad \text{mV}$ $A_{VD} \text{Large-signal differential voltage amplification} \qquad V_{O} = 1 \text{V to 6 V}, R_{L} = 10 \text{k}\Omega \qquad \begin{array}{c} 25^{\circ}\text{C} & 5 & 23 \\ \hline -40^{\circ}\text{C} & 3.5 & 32 \\ \hline 85^{\circ}\text{C} & 3.5 & 32 \\ \hline \hline 85^{\circ}\text{C} & 65 & 80 \\ \hline \hline -40^{\circ}\text{C} & 60 & 81 \\ \hline 85^{\circ}\text{C} & 60 & 86 \\ \hline \end{array} \qquad \text{dB}$ $K_{SVR} \begin{array}{c} \text{Supply-voltage rejection ratio} \\ \text{($\Delta V_{DD}/\Delta V_{IO}$)} \end{array} \qquad \begin{array}{c} V_{DD} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \\ V_{O} = 5 \text{V}, \\ N_{O} \text{load} \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} & 6.5 & 9.5 \\ \hline -40^{\circ}\text{C} & 60 & 96 \\ \hline \hline 85^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \end{array}$						25°C	3.2	3.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOH	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	-40°C	3	3.8		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	3	3.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C		0	50	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	5	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _{VD}	Large-signal differential voltage a	amplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	3.5	32		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	3.5	19		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	80		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}$ min		-40°C	60	81		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	60	86		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	95		
No load Sign	ksvr			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	-40°C	60	92		dB
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ V_{IC	L	(ΔV _{DD} /ΔV _{IO})	- 5 V 13 V 7 V	<u> </u>	85°C	60	96			
No load 1.9 4.4 mA				5,4		25°C		1.4	3.2	
	I _{DD}	Supply current (two amplifiers)			AIC = 2 A'	-40°C		1.9	4.4	mA
						85°C		1.1	2.4	

[†]Full range is –40°C to 85°C.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, $V_{DD} = 10 \text{ V}$ (unless otherwise noted)

$V_{IO} \text{Input offset voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$V_{IO} \text{Input offset voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$V_{IO} \text{Input offset voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$V_{IO} \text{Input offset voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ V_{\text{IO}} \text{Input offset voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$RS = 50 \Omega, \qquad RL = 10 k\Omega \qquad Full range \qquad 2900$ $0 V_{IO} \qquad Temperature coefficient of input offset voltage \qquad 25^{\circ}C to \\ 85^{\circ}C \qquad 2 \qquad \mu V/^{\circ}C \qquad 100 \qquad PA$ $I_{IO} \qquad Input offset current (see Note 4) \qquad V_{O} = 5 V, \qquad V_{IC} = 5 V \qquad 25^{\circ}C \qquad 0.1 \\ 85^{\circ}C \qquad 26 1000 \qquad PA$ $I_{IB} \qquad Input bias current (see Note 4) \qquad V_{O} = 5 V, \qquad V_{IC} = 5 V \qquad 25^{\circ}C \qquad 0.7 \\ 85^{\circ}C \qquad 220 2000 \qquad PA$ $V_{IC} = 5 V \qquad V_{IC} = 5 V \qquad V_{IC} = 5 V \qquad 0.25^{\circ}C \qquad 0.7 \\ 85^{\circ}C \qquad 220 2000 \qquad V_{IC} = 5 V \qquad 0.25^{\circ}C \qquad 0.7 \\ 85^{\circ}C \qquad 2000 \qquad 0.7 \\ 95^{\circ}C \qquad$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
VICE Common-mode input voltage range VO = 5 V, VIC = 5 V 25°C 0.7 PA
Input bias current (see Note 4) $V_O = 5 \text{ V}$, $V_{IC} = 5 \text{ V}$
Solution
VICE Common-mode input voltage range
VICE Common-mode input voltage range 9 9.2
Vice Common-mode input voltage range
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(see Note 5) -0.2 Full range to V
Turrange 8.5
25°C 8 8.5
V_{OH} High-level output voltage $V_{ID} = 100 \text{ mV}$, $R_L = 10 \text{ k}\Omega$ -40°C 7.8 8.5 V
85°C 7.8 8.5
25°C 0 50
V_{OL} Low-level output voltage $V_{ID} = -100 \text{ mV}$, $I_{OL} = 0$ -40°C 0 50 mV
85°C 0 50
25°C 10 36
A _{VD} Large-signal differential voltage amplification $V_O = 1 \text{ V to 6 V}$, $R_L = 10 \text{ k}\Omega$ -40°C 7 46 V/m
85°C 7 31
25°C 65 85
CMRR Common-mode rejection ratio $V_{IC} = V_{ICR}$ min -40° C 60 87 dB
85°C 60 88
25°C 65 95
k _{SVR} Supply-voltage rejection ratio $V_{DD} = 5 \text{ V to } 10 \text{ V}, V_{O} = 1.4 \text{ V}$ $V_{O} = 1.4 \text{ V}$
(AvDD)/Av(O) 85°C 60 96
25°C 1.4 4
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ V_{IC
85°C 1.5 3.2

[†] Full range is –40°C to 85°C.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 5 V (unless otherwise noted)

	DADAMETED		TEST COMP	ITIONS	T. T	TLC27	2M, TLC	277M	UNIT
	PARAMETER		TEST COND	IIIONS	T _A †	MIN	TYP	MAX	UNII
		TLC272M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
VIO	Input offset voltage	I LOZI ZIVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	IIIV
1 10	input onset voltage	TLC277M	$V_0 = 1.4 V$	$V_{IC} = 0$,	25°C		200	500	μV
		TLOZITIVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3750	μν
αVIO	Temperature coefficient of input or voltage	offset			25°C to 125°C		2.1		μV/°C
l.a	Input offset current (see Note 4)		V _O = 2.5 V	V _{IC} = 2.5 V	25°C		0.1		pА
lio	input onset current (see Note 4)		V() = 2.5 V	vIC = 2.5 v	125°C		1.4	15	nA
	Input bias current (see Note 4)		V _O = 2.5 V	V _{IC} = 2.5 V	25°C		0.6		pА
ΙΒ	input bias current (see Note 4)		V() = 2.5 V	vIC = 2.5 v	125°C		9	35	nA
.,	Common-mode input voltage ran	qe			25°C	0 to 4	-0.3 to 4.2		V
VICR	ICR (see Note 5)				Full range	0 to 3.5			V
					25°C	3.2	3.8		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	−55°C	3	3.8		V
					125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage a	mplification	$V_0 = 0.25 \text{ V to 2 V}$	$R_L = 10 \text{ k}\Omega$	−55°C	3.5	35		V/mV
					125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	81		dB
					125°C	60	84		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	(A V DD / A V DO /				125°C	60	97		
			V- 05.V		25°C		1.4	3.2	
I _{DD}	Supply current (two amplifiers)		V _O = 2.5 V, No load	$V_{IC} = 2.5 V,$	−55°C		2	5	mA
					125°C		1	2.2	

† Full range is –55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, $V_{DD} = 10 \text{ V}$ (unless otherwise noted)

	DADAMETED		TEST COND	UTIONS	T _A †	TLC272	2M, TLC	277M	TINU
	PARAMETER		TEST COND	ITIONS	'A'	MIN	TYP	MAX	UNIT
		TLC272M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
\ \ \ .	land offer the state of	I LC2/2IVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	IIIV
VIO	Input offset voltage	TLC277M	V _O = 1.4 V,	V _{IC} = 0,	25°C		250	800	\/
		I LOZI I IVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μV
ανιο	Temperature coefficient of input voltage	offset			25°C to 125°C		2.2		μV/°C
l. a	Input offeet current (see Note 4)		V = - 5 V	V: F V	25°C		0.1		pA
lio	Input offset current (see Note 4)		$V_0 = 5 V$,	$V_{IC} = 5 V$	125°C		1.8	15	nA
1	Input bigg gurrant (and Note 4)		V- 5V	V F.V	25°C		0.7		pА
IB	Input bias current (see Note 4)		$V_0 = 5 V$,	$V_{IC} = 5 V$	125°C		10	35	nA
Vion	Common-mode input voltage rai	nge			25°C	0 to 9	-0.3 to 9.2		V
VICR (see Note 5)					Full range	0 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage	Low-level output voltage			−55°C		0	50	mV
					125°C		0	50	
					25°C	10	36		
A _{VD}	Large-signal differential voltage amplification		$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	7	50		V/mV
	apoao				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	87		dB
					125°C	60	86		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔVDD/ΔVIO)		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	(= · DD/ = · 10/				125°C	60	97		
			V _O = 5 V,	V:	25°C		1.9	4	
I _{DD}	Supply current (two amplifiers)		VO = 5 V, No load	$V_{IC} = 5 V$,	−55°C		3	6	mA
					125°C		1.3	2.8	

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics, $V_{DD} = 5 V$, $T_A = 25$ °C (unless otherwise noted)

	DADAMETED	TEST CONF	NTIONE	Т	LC272Y		LINUT
	PARAMETER	TEST COND	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_O = 1.4 \text{ V},$ $R_S = 50 \Omega,$	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
IIO	Input offset current (see Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V		0.1		pA
I _{IB}	Input bias current (see Note 4)	$V_0 = 2.5 V$,	V _{IC} = 2.5 V		0.6		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		٧
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_0 = 0.25 \text{ V to 2 V}$	$R_L = 10 \text{ k}\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	80		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95	·	dB
I _{DD}	Supply current (two amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		1.4	3.2	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

	PARAMETER		DITIONS	TLC272Y			LIMIT
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0$, $R_L = 10 \text{ k}\Omega$		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
I _{IO}	Input offset current (see Note 4)	V _O = 5 V,	V _{IC} = 5 V		0.1		рА
I _{IB}	Input bias current (see Note 4)	V _O = 5 V,	V _{IC} = 5 V		0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	R _L = 10 kΩ	8	8.5		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
A _{VD}	Large-signal differential voltage amplification	$V_0 = 1 \ V \ to \ 6 \ V,$	$R_L = 10 \text{ k}\Omega$	10	36		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	85		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		1.9	4	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

^{5.} This range also applies to each input individually.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	TEST CONDITIONS		TLC272C, TLC272AC, TLC272BC, TLC277C			UNIT					
				TA	MIN	TYP	MAX						
				25°C		3.6							
			V _{IPP} = 1 V	0°C		4							
SR	Slow rate at unity gain	$R_L = 10 kΩ$, $C_L = 20 pF$,		70°C		3		V/μs					
J SK	Slew rate at unity gain	See Figure 1		25°C		2.9		ν/μ5					
			V _{IPP} = 2.5 V	0°C		3.1							
				70°C		2.5							
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz					
				25°C		320							
Вом	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,		0°C		340		kHz					
			See Figure 1	70°C		260							
				25°C		1.7							
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 \text{ pF},$	0°C		2		MHz					
		See rigule 3		70°C		1.3							
		V 40V	, ,	25°C		46°							
φm	Phase margin	$V_{ } = 10 \text{ mV},$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$	T = B ₁ , See Figure 3	0°C		47°		
	-	- 20 pi,		70°C		43°							

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	TA	TLC272 TLC272			UNIT
				- 1	MIN	TYP	MAX	
				25°C		5.3		
			V _{IPP} = 1 V	0°C		5.9		
SR	Clow rate at unity gain	$R_L = 10 \text{ k}\Omega$,		70°C		4.3		\//ua
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/μs
		3	V _{IPP} = 5.5 V	0°C		5.1		
				70°C		3.8		
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,	C _L = 20 pF,	0°C		220		kHz
			See rigure r	70°C		140		
				25°C		2.2		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C		2.5		MHz
		See rigule 3		70°C		1.8		
		N 40V	(5	25°C		49°		
φm	Phase margin	$V_I = 10 \text{ mV},$ $C_L = 20 \text{ pF},$	f = B ₁ , See Figure 3	0°C		50°	0	
		OL - 20 pi, Oce i igule 3		70°C		46°		

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	TA	TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT							
				TA TLC272BI, TLC277I MIN UNIT 25°C 3.6 -40°C -40°C 4.5 -40°C 85°C 2.8 -40°C -40°C 3.5 -40°C 85°C 2.3 -40°C 25°C 25 nV/√F 25°C 320 -40°C 85°C 250 -40°C 25°C 1.7 -40°C											
				25°C		3.6									
			V _{IPP} = 1 V	-40°C		4.5									
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$,		85°C		2.8		\//uc							
Jok	Slew rate at unity gain	See Figure 1		25°C		2.9		ν/μ5							
			V _{IPP} = 2.5 V	−40°C		3.5									
											85°C		2.3		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz							
				25°C		320									
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,	C _L = 20 pF,	-40°C		380		kHz							
			See rigure r	85°C		250									
				25°C		1.7									
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF,$	-40°C		2.6		MHz							
		See Figure 3		85°C		1.2									
		10	, p	25°C		46°									
φm	Phase margin	$V_I = 10 \text{ mV},$ 1 $C_L = 20 \text{ pF},$ 3	f = B ₁ , See Figure 3	-40°C		49°									
				85°C		43°									

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	TA	TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT					
				MIN TYP MAX 25°C 5.3 -40°C 6.8									
				25°C		5.3							
			V _{IPP} = 1 V	-40°C		6.8							
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$,		85°C		4		\//ua					
J SK	Slew rate at unity gain	See Figure 1		25°C		4.6		V/μS					
		3	V _{IPP} = 5.5 V	-40°C		5.8							
				85°C		3.5							
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz					
				25°C		200							
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 10 \text{ k}\Omega$,	C _L = 20 pF,	-40°C		260		kHz					
			See rigure r	85°C		130							
				25°C		2.2							
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C		3.1		MHz					
		See rigure 3		85°C		1.7							
		V 40 V	<i>t</i> D	25°C		49°							
φm	Phase margin	$V_I = 10 \text{ mV},$ $C_L = 20 \text{ pF},$	VI = 10 mV,	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$	$V_1 = 10 \text{ mV},$	$V_{1} = 10 \text{ mV},$	T = B ₁ , See Figure 3	-40°C		52°		
		- 20 μ,	occ i igule 3	85°C		46°							

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	DADAMETER	TEOT 00	NDITIONS	-	TLC272M, TLC277M			LINIT				
	PARAMETER	IESI CO	NDITIONS	TA	MIN	TYP	MAX	UNIT				
				25°C		3.6						
			V _{IPP} = 1 V	−55°C		4.7						
SR	Slew rate at unity gain	$R_L = 10 kΩ$, $C_L = 20 pF$,		125°C		2.3		V/μs				
J SIX	Siew rate at unity gain	See Figure 1		25°C		2.9		ν/μδ				
			V _{IPP} = 2.5 V	−55°C		3.7						
								125°C		2		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz				
		., .,		25°C		320						
Вом	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	−55°C	−55°C 400		kHz					
			N_ = 10 K22,		INC = 10 Ksz, See i igule i	125°C		230				
				25°C		1.7						
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 \text{ pF},$	−55°C		2.9		MHz				
		occ rigure o		125°C		1.1						
		\/. 10 m)/	4 D.	25°C		46°						
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$v_1 = 10 \text{ m/s},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$v_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	I = D ₁ , See Figure 3	−55°C		49°	
	·		occ i iguie o	125°C		41°						

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	DADAMETED	TEST 60	TEST CONDITIONS TA		TLC272	2M, TLC	277M						
	PARAMETER	l lesi co	NDITIONS	'A	MIN	TYP	MAX	UNIT					
				25°C		5.3							
			V _{IPP} = 1 V	−55°C		7.1							
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$,		125°C		3.1		1////					
SK.	Slew rate at unity gain	See Figure 1		25°C		4.6		V/μs					
			V _{IPP} = 5.5 V	−55°C		6.1							
									125°C		2.7		
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz					
				25°C		200							
Вом	Maximum output-swing bandwidth	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH, $R_L = 10 \text{ k}\Omega$,	VO = VOH,	C _L = 20 pF, See Figure 1	−55°C		280		kHz
			See rigule r	125°C		110							
				25°C		2.2							
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 \text{ pF},$	−55°C		3.4		MHz					
		occ rigure s		125°C		1.6							
		\/: 40 m)/	4 D.	25°C		49°							
φm	ϕ_{m} Phase margin $V_{\text{l}} = 10 \text{ mV},$ $C_{\text{L}} = 20 \text{ pF},$	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	f = B ₁ , See Figure 3	−55°C		52°					
			oce rigule 3	Jee rigule 3	125°C	125°C		44°					

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

operating characteristics, V_{DD} = 5 V, T_A = 25°C

	PARAMETER	_	EST CONDITIO	Ne	Т	LC272Y		UNIT
	FARAMETER	'	EST CONDITIO	No	MIN	TYP	MAX	UNII
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	V _{IPP} = 1 V		3.6		V/μs
J SK	Siew rate at unity gain	See Figure 1		V _{IPP} = 2.5 V		2.9		ν/μ5
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF,$	$R_L = 10 \text{ k}\Omega$,		320		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF,	See Figure 3		1.7		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	$C_L = 20 pF,$		46°		

operating characteristics, V_{DD} = 10 V, T_A = 25°C

	PARAMETER	_	EST CONDITIO	Ne	Т	LC272Y		UNIT
	FARAMETER	''	EST CONDITIO	No	MIN	TYP	MAX	UNIT
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	V _{IPP} = 1 V		5.3		V/μs
SK .	Slew rate at unity gain	See Figure 1		V _{IPP} = 5.5 V		4.6		ν/μ5
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 pF,	R _L = 10 kΩ,		200		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF,	See Figure 3		2.2		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		49°	·	

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

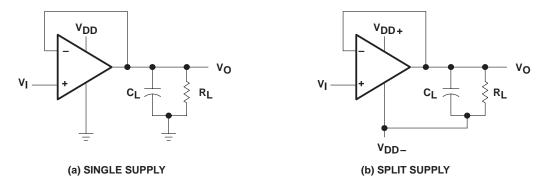


Figure 1. Unity-Gain Amplifier

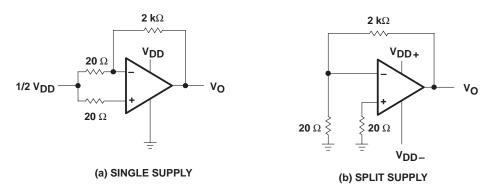


Figure 2. Noise-Test Circuit

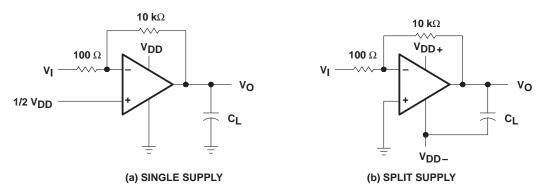


Figure 3. Gain-of-100 Inverting Amplifier

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

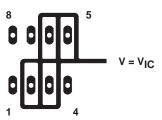


Figure 4. Isolation Metal Around Device Inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

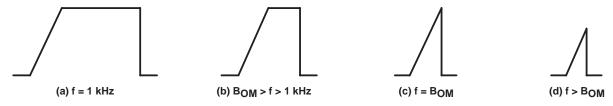


Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
lιΟ	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
IDD	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
٧n	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS

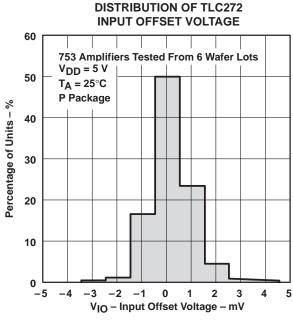


Figure 6

DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

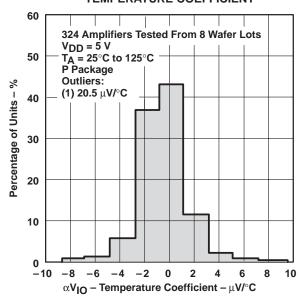


Figure 8

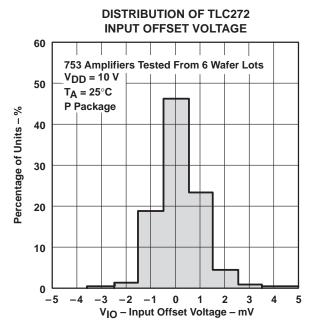
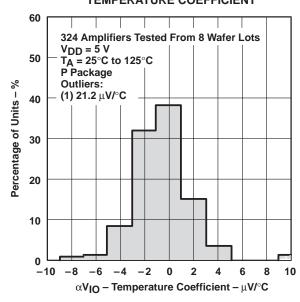
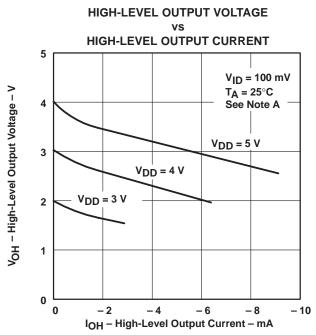
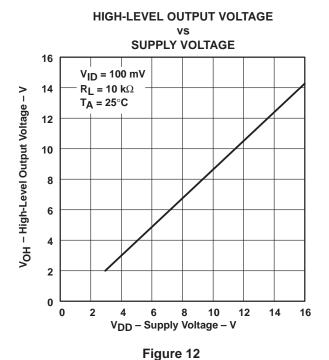


Figure 7

DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT


Figure 9

TYPICAL CHARACTERISTICS[†]

NOTE A: The 3-V curve only applies to the C version.

Figure 10

HIGH-LEVEL OUTPUT VOLTAGE VS HIGH-LEVEL OUTPUT CURRENT

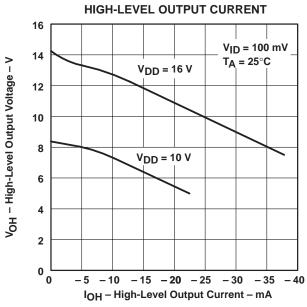
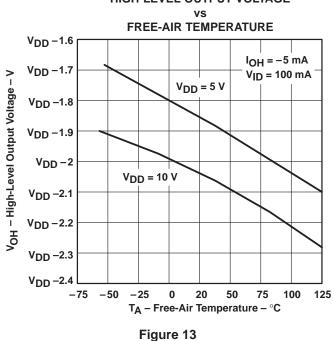
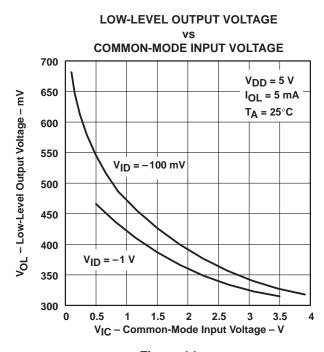



Figure 11

HIGH-LEVEL OUTPUT VOLTAGE



† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS[†]

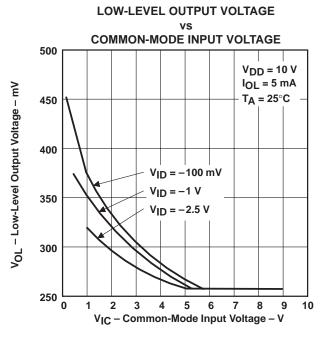
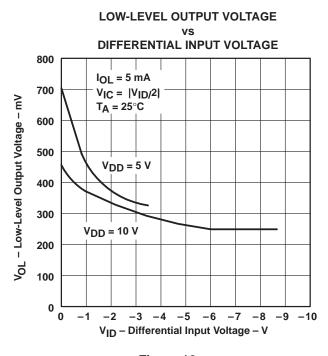
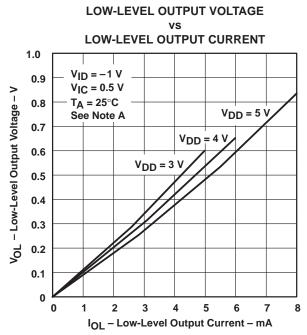



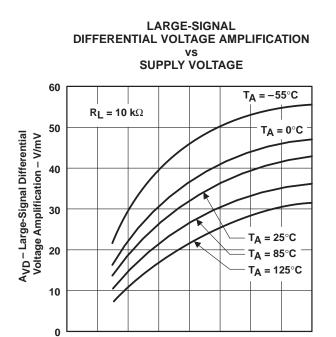
Figure 14

LOW-LEVEL OUTPUT VOLTAGE FREE-AIR TEMPERATURE 900 $I_{OL} = 5 \text{ mA}$ 800 V_{ID} = -1 V VoL - Low-Level Output Voltage - mV V_{IC} = 0.5 V 700 600 $V_{DD} = 5 V$ 500 400 $V_{DD} = 10 V$ 300 200 100 -50 25 -25 50 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 17


Figure 16

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS[†]

NOTE A: The 3-V curve only applies to the C version. **Figure 18**

8

V_{DD} - Supply Voltage - V

Figure 20

10

12

14

2

0

LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

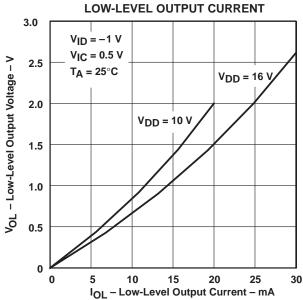
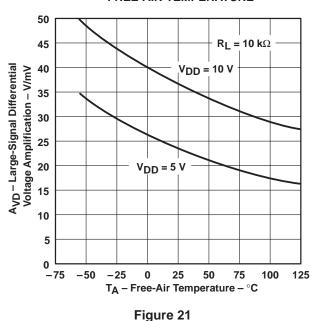
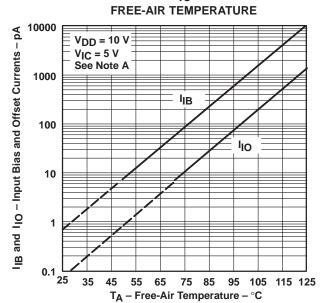



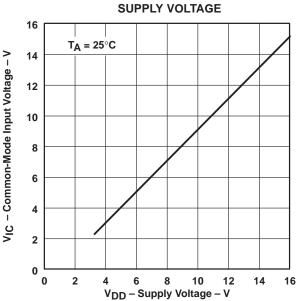
Figure 19

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

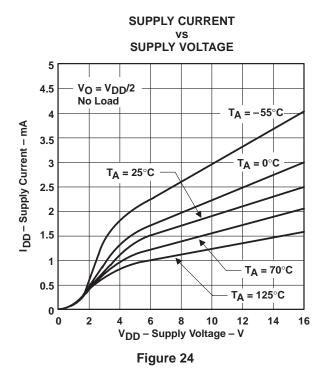

16

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994


TYPICAL CHARACTERISTICS[†]

INPUT BIAS CURRENT AND INPUT OFFSET CURREN vs

NOTE A: The typical values of input bias current and input


COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT

offset current below 5 pA were determined mathematically.

Figure 22

Figure 23

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

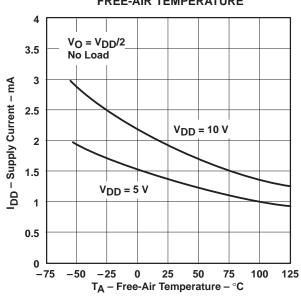


Figure 25

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLEW RATE

TYPICAL CHARACTERISTICS[†]

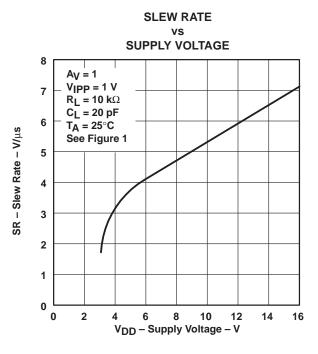
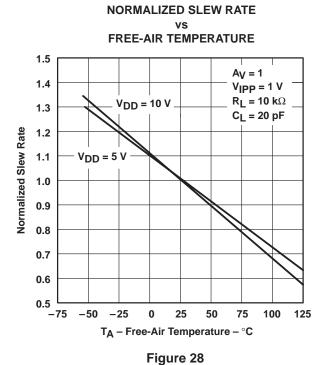



Figure 26

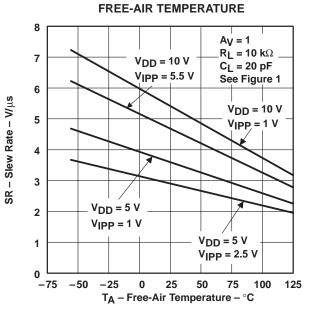
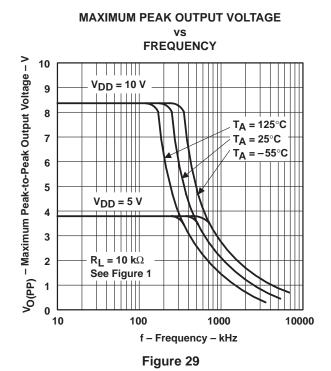
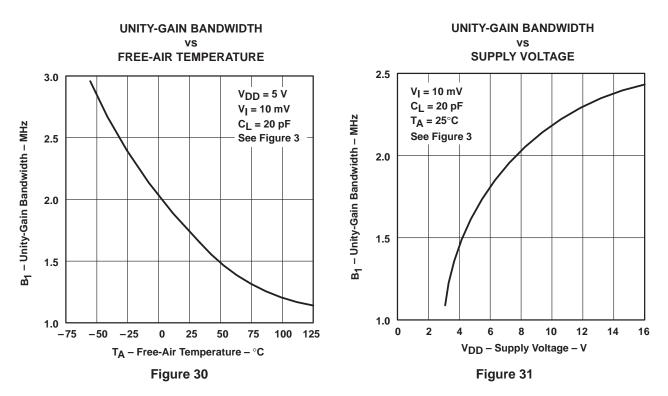



Figure 27



† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS†

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

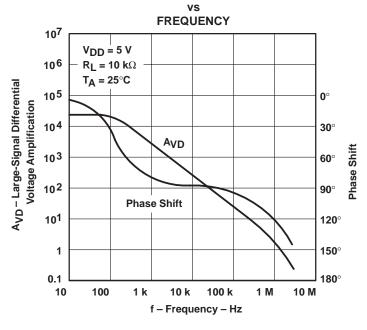


Figure 32

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

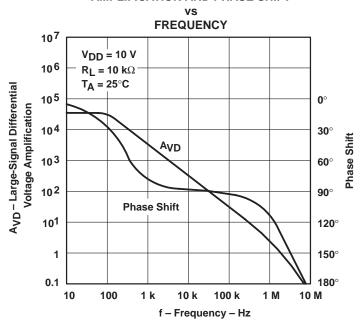
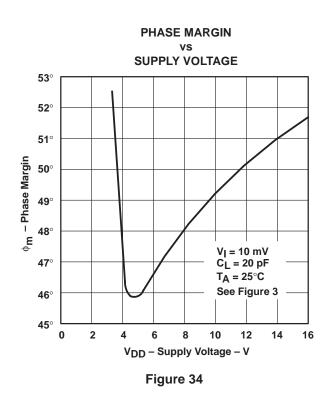
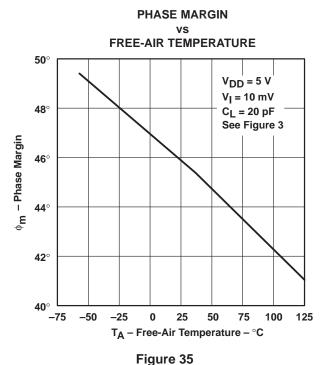
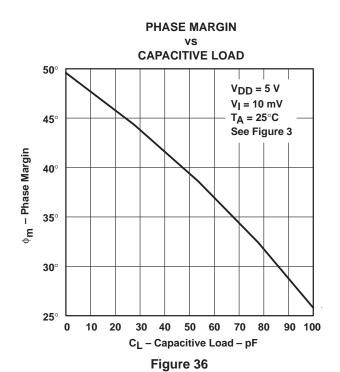
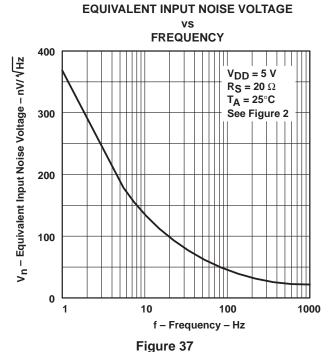




Figure 33




† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

single-supply operation

While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling.

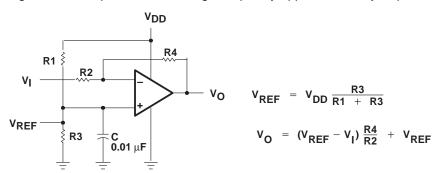


Figure 38. Inverting Amplifier With Voltage Reference

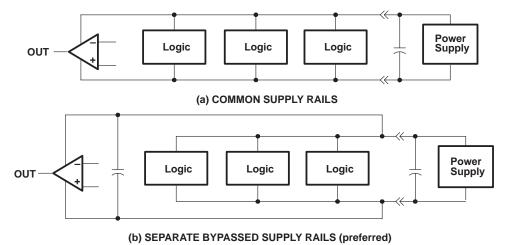


Figure 39. Common vs Separate Supply Rails

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

input characteristics

The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1 \text{ V}$ at $T_A = 25^{\circ}\text{C}$ and at $V_{DD} - 1.5 \text{ V}$ at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μV/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and TLC277 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

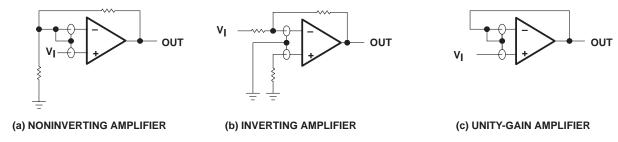
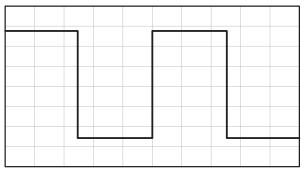
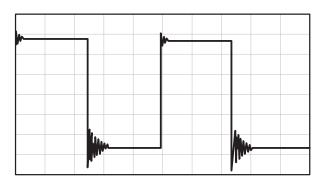


Figure 40. Guard-Ring Schemes

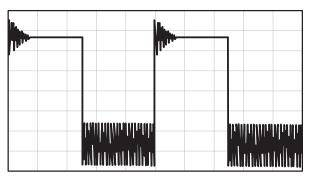
output characteristics

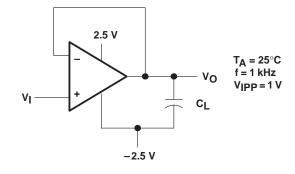
The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.


All operating characteristics of the TLC272 and TLC277 are measured using a 20-pF load. The devices can drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION


output characteristics (continued)


(a) $C_L = 20$ pF, $R_L = NO LOAD$

(b) $C_L = 130 \text{ pF}$, $R_L = NO \text{ LOAD}$

(c) $C_L = 150 \text{ pF}, R_L = NO \text{ LOAD}$

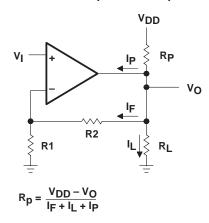

(d) TEST CIRCUIT

Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between approximately 60 Ω and 180 Ω , depending on how hard the operational amplifier input is driven. With very low values of R_P, a voltage offset from 0 V at the output occurs. Second, pullup resistor R_P acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

APPLICATION INFORMATION

output characteristics (continued)

 I_p = Pullup current required by the operational amplifier (typically 500 μ A)

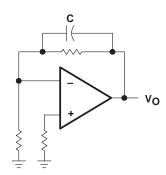


Figure 42. Resistive Pullup to Increase VOH

Figure 43. Compensation for Input Capacitance

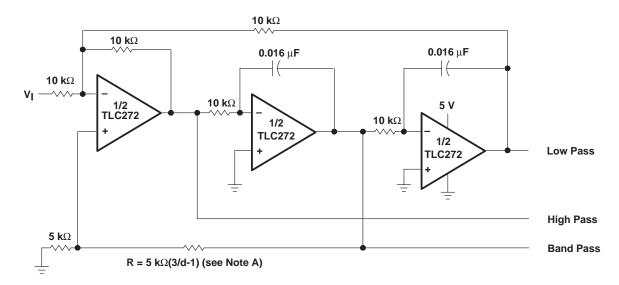
feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection

The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up


Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and TLC277 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

NOTE A: d = damping factor, 1/Q

Figure 44. State-Variable Filter

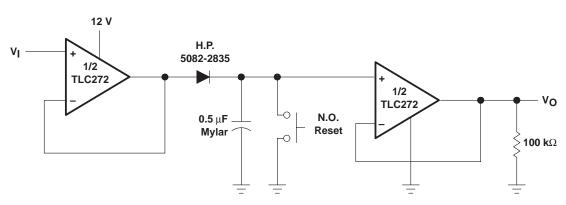
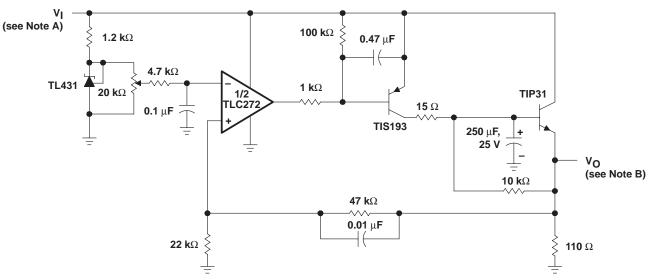
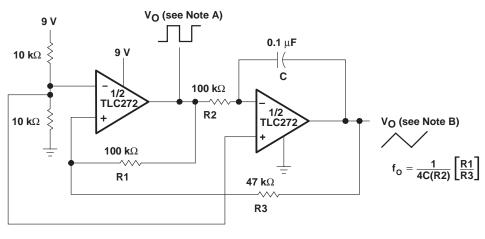
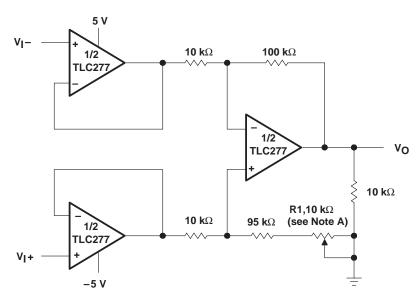



Figure 45. Positive-Peak Detector


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

NOTES: A. $V_I = 3.5 \text{ to } 15 \text{ V}$ B. $V_O = 2 \text{ V}, 0 \text{ to } 1 \text{ A}$


Figure 46. Logic-Array Power Supply

NOTES: A. $V_{O(PP)} = 8 \text{ V}$ B. $V_{O(PP)} = 4 \text{ V}$

Figure 47. Single-Supply Function Generator

APPLICATION INFORMATION

NOTE B: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier

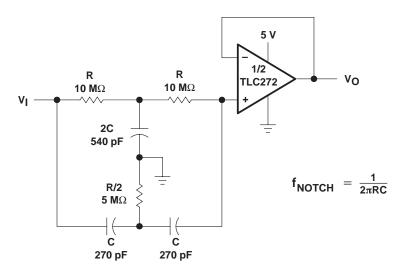


Figure 49. Single-Supply Twin-T Notch Filter

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated