Outstanding Combination of dc Precision and AC Performance: Unity-Gain Bandwidth . . . 15 MHz Typ

 $V_n \ \dots \ 3.3 \ nV/\sqrt{Hz}$ at f = 10 Hz Typ, 2.5 nV/ \sqrt{Hz} at f = 1 kHz Typ $V_{IO} \ \dots \ 25 \ \mu V$ Max $A_{VD} \ \dots \ 45 \ V/\mu V$ Typ With $R_L = 2 \ k\Omega$,

- 19 V/ μ V Typ With R_I = 600 Ω
- Available in Standard-Pinout Small-Outline Package
- Output Features Saturation Recovery Circuitry
- Macromodels and Statistical information

description

The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices.

In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 μ V and 25 μ V, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/ μ V (typ).

			PACKAGED	DEVICES		01115
T _A	V _{IO} max AT 25 [°] C	SMALL OUTLINE [†] (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	FORM [‡] (Y)
0° C to 70° C	25 μV	TLE2027ACD TLE2037ACD	—	_	TLE2027ACP TLE2037ACP	TLE2027Y TLE2037Y
0°C to 70°C	100 µV	TLE2027CD TLE2037CD			TLE2027CP TLE2037CP	TLE2027Y TLE2037Y
40°C to 105°C	25 μV	TLE2027AID TLE2037AID	_	_	TLE2027AIP TLE2037AIP	—
-40°C to 105°C	100 µV	TLE2027ID TLE2037ID	_		TLE2027IP TLE2037IP	—
-55° C to 125°C	25 μV	TLE2027AMD TLE2037AMD	TLE2027AMFK TLE2037AMFK	TLE2027AMJG TLE2037AMJG	TLE2027AMP TLE2037AMP	—
00 0 10 120 0	100 µV	TLE2027MD TLE2037MD	TLE2027MFK TLE2037MFK	TLE2027MJG TLE2037MJG	TLE2027MP TLE2037MP	_

[†] The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).

[‡] Chip forms are tested at 25°C only.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

description (continued)

The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/ \sqrt{Hz} and 2.5 nV/ \sqrt{Hz} at frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater.

Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 105° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

symbol

TLE202xY chip information

This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

ACTUAL DEVICE COMPONENT COUNT											
COMPONENT TLE2027 TLE2037											
Transistors	61	61									
Resistors	26	26									
epiFET	1	1									
Capacitors	4	4									

TEXAS INSTRUMENTS POST OFFICE BOX 65530* DALLAS, TEXAS 75265

4

Template Release Date: 7–11–94 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027V, TLE2037V EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

SLOS192 - FEBRUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC+} (see Note 1)	19 V
Supply voltage, V _{CC}	
Differential input voltage, VID (see Note 2)	±1.2 V
Input voltage range, V _I (any input)	V_{CC+}
Input current. II (each Input)	$\pm 1 \text{ mA}$
Output current. In	± 50 mA
Total current into Vcc	50 mA
Total current out of Voc	50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total power dissination	See Dissipation Rating Table
Operating free-air temperature range T_{A} : C suffix	
	- 40°C to 105°C
1 SUIIX	
Storage temperature range, I _{stg}	
Case temperature for 60 seconds, T _C : FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or	P package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG pa	ackage 300°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC +} and V_{CC -}.

2. Differential voltages are at IN+ with respect to IN-. Excessive current flows if a differential input voltage in excess of approximately \pm 1.2 V is applied between the inputs unless some limiting resistance is used.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

	DISSIPATION RATING TABLE										
PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 105°C POWER RATING	T _A = 125°C POWER RATING						
D	725 mW	5.8 mW/°C	464 mW	261 mW	145 mW						
FK	1375 mW	11.0 mW/°C	880 mW	495 mW	275 mW						
JG	1050 mW	8.4 mW/°C	672 mW	378 mW	210 mW						
Р	1000 mW	8.0 mW/°C	640 mW	360 mW	200 mW						

recommended operating conditions

		C SUI	FFIX	I SUF	FIX	M SUI	FFIX	
		MIN	MAX	MIN	MAX	MIN	MAX	
Supply voltage, V _{CC\pm}		±4	± 19	±4	±19	±4	±19	V
	$T_A = 25^{\circ}C$	-11	11	-11	11	-11	11	V
	T _A = Full range‡	-10.5	10.5	-10.4	10.4	-10.2	10.2	v
Operating free-air temperature, TA		0	70	-40	105	-55	125	°C
, , , , , , , , , , , , , , , , ,		-						÷

[‡]Full range is 0°C to 70°C for C-suffix devices, -40°C to 105°C for I-suffix devices, and -55°C to 125°C for M-suffix devices.

TLE20x7C electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V (unless otherwise noted)

			_ +	Т	LE20x7	С	TL	E20x7A	С	UNIT
	PARAMETER	TEST CONDITIONS	TAT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vie	Input offect voltage		25°C		20	100		10	25	
VIO	input onset voltage		Full range			145			70	μv
α _{VIO}	Temperature coefficient of input offset voltage		Full range		0.4	1		0.2	1	μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0,$ $R_S = 50 \Omega$	25°C		0.006	1		0.006	1	μV/mo
line .	logut offect ourrent	1	25°C		6	90		6	90	-
υÖ	input onset current		Full range			150			150	IIA
lin	Input hiss current		25°C		15	90		15	90	n۸
чв	Input bias current		Full range			150			150	
Viez	Common-mode input	Bo - 50 0	25°C	-11 to 11	-13 to 13		-11 to 11	-13 to 13		V
VICR	voltage range	KS = 50 22	Full range	-10.5 to 10.5			-10.5 to 10.5			V
		P 600 O	25°C	10.5	12.9		10.5	12.9		
Veri	Maximum positive peak	KL = 000 32	Full range	10			10			V
VOM +	output voltage swing	$P_{\rm L} = 2 k \Omega$	25°C	12	13.2		12	13.2		v
			Full range	11			11			
		P 600 O	25°C	-10.5	-13		-10.5	-13		
Vou	Maximum negative peak	KL = 000 32	Full range	-10			-10			V
VOM –	output voltage swing	$P_1 = 2k0$	25°C	- 12	-13.5		- 12	-13.5		v
			Full range	- 11			- 11			
		$V_{O} = \pm 11 V$, $R_{L} = 2 k\Omega$	25°C	5	45		10	45		
		$V_{O} = \pm 10 \text{ V}, R_{L} = 2 \text{ k}\Omega$	Full range	2			4			
AVD	Large-signal differential	$V_{0} = \pm 10 V_{0} R_{1} = 1 k_{0}$	25°C	3.5	38		8	38		V/uV
	voltage amplification	$V_0 = \pm 10 V$, $K_1 = 1 K_{22}$	Full range	1			2.5			νμν
		$V_{O} = \pm 10 V,$	25°C	2	19		5	19		
		R _L = 600 Ω	Full range	0.5			2			
Ci	Input capacitance		25°C		8			8		pF
z ₀	Open-loop output impedance	IO = 0	25°C		50			50		Ω
CMPP	Common-mode rejection	VIC = VICRmin,	25°C	100	131		117	131		dB
CIVIER	ratio	$R_{S} = 50 \Omega$	Full range	98			114			uв
kovp	Supply-voltage rejection	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V},$ R _S = 50 Ω	25°C	94	144		110	144		dB
"SVR	ratio ($\Delta V_{CC\pm} / \Delta V_{IO}$)	$V_{CC\pm} = \pm 4 V \text{ to } \pm 18 V,$ R _S = 50 Ω	Full range	92			106			
	Supply current	Vo = 0 No lood	25°C		3.8	5.3		3.8	5.3	m^
	Supply current	$v_{O} = 0$, indicad	Full range			5.6			5.6	MA

[†] Full range is 0°C to 70°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS192 - FEBRUARY 1997

TLE20x7C operating characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V, T_A = 25°C (unless otherwise specified)

		TEST CONDI	TIONE		TLE20x7C		т	LE20x7AC		LINUT
	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$R_L = 2 k\Omega$, $C_L = 100 pE$	TLE2027	1.7	2.8		1.7	2.8		
		See Figure 1	TLE2037	6	7.5		6	7.5		
SR	Slew rate at unity gain	$R_{L} = 2 k\Omega,$ $C_{L} = 100 \text{ pF},$	TLE2027	1.2			1.2			V/µs
		$T_A = 0^{\circ}C$ to 70°C, See Figure 1	TLE2037	5			5			
V	Equivalent input noise volt-	R _S = 20 Ω,	f = 10 Hz		3.3	8		3.3	4.5	m) (// 1 =
۷n	age (see Figure 2)	R _S = 20 Ω,	f = 1 kHz		2.5	4.5		2.5	3.8	NV/\⊓Z
V _{N(PP)}	Peak-to-peak equivalent in- put noise voltage	f = 0.1 Hz to 10 Hz			50	250		50	130	nV
	Equivalent input noise cur-	f = 10 Hz			1.5	4		1.5	4	
l 'n	rent	f = 1 kHz			0.4	0.6		0.4	0.6	pA/√Hz
	Total harmonic distortion	$V_{O} = +10 V,$ A _{VD} = 1, See Note 5	TLE2027		<0.002%			<0.002%		
שחין	Total narmonic distortion	V _O = + 10 V, A _{VD} = 5, See Note 5	TLE2037		<0.002%			<0.002%		
в,	Unity-gain bandwidth	$R_L = 2 k\Omega$,	TLE2027	7	13		9	13		
P1	(see Figure 3)	C _L = 100 pF	TLE2037	35	50		35	50		
Bou	Maximum output-swing	$P_1 = 2k0$	TLE2027		30			30		kH7
DOM	bandwidth		TLE2037		80			80		KI IZ
φ	Phase margin at unity gain	$R_L = 2 k\Omega$,	TLE2027		55°			55°		
Ψm	(see Figure 3)	C _L = 100 pF	TLE2037		50°			50°		

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

TLE20x7I electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	- +	г	LE20x7		Т	LE20x7A	I	LINUT
	PARAMETER	TEST CONDITIONS	TAI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vie	Input offset voltage		25°C		20	100		10	25	
٩O	input onset voltage		Full range			180			105	μv
α_{VIO}	Temperature coefficient of input offset voltage		Full range		0.4	1		0.2	1	μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0$, $R_S = 50 \Omega$	25°C		0.006	1		0.006	1	μV/mo
	Inclut offect ourrent	1	25°C		6	90		6	90	
чО	input onset current		Full range			150			150	ΠA
lun.	Input bios ourropt		25°C		15	90		15	90	۳Å
чв	input bias current		Full range			150			150	IIA
Viez	Common-mode input	Bo - 50.0	25°C	-11 to 11	-13 to 13		-11 to 11	-13 to 13		V
VICR	voltage range	RS = 50.02	Full range	-10.4 to 10.4			-10.4 to 10.4			V
		P 600 O	25°C	10.5	12.9		10.5	12.9		
Varia	Maximum positive peak	K[= 000 32	Full range	10			10			V
VOM +	output voltage swing	$P_{\rm L} = 2 k \Omega$	25°C	12	13.2		12	13.2		v
		KL = 2 K32	Full range	11			11			
		$P_{\rm L} = 600.0$	25°C	-10.5	-13		-10.5	-13		
Vou	Maximum negative peak	INC = 000 32	Full range	-10			-10			V
	output voltage swing	$R_1 = 2 k\Omega$	25°C	- 12	-13.5		- 12	-13.5		v
			Full range	- 11			- 11			
		$V_{O} = \pm 11 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	25°C	5	45		10	45		
		$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	Full range	2			3.5			
AVD	Large-signal differential	$V_{0} = \pm 10 V R_{1} = 1 kO$	25°C	3.5	38		8	38		V/nV
NVD	voltage amplification	V0 = ± 10 V, NL = 1 K22	Full range	1			2.2			viµv
		$V_{O} = \pm 10 V_{C} R_{L} = 600 \Omega_{C}$	25°C	2	19		5	19		
		·0-≟io , n[=000 III	Full range	0.5			1.1			
Ci	Input capacitance		25°C		8			8		рF
z _o	Open-loop output impedance	I ^O = 0	25°C		50			50		Ω
CMPP	Common-mode rejection	$V_{IC} = V_{ICR}min,$	25°C	100	131		117	131		dB
CIVILAT	ratio	R _S = 50 Ω	Full range	96			113			uв
kovp	Supply-voltage rejection	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V},$ R _S = 50 Ω	25°C	94	144		110	144		dB
"SVR	ratio ($\Delta V_{CC\pm} / \Delta V_{IO}$)	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V},$ R _S = 50 Ω	Full range	90			105			
	Supply current		25°C		3.8	5.3		3.8	5.3	m^
		$v_0 = 0$, No load	Full range			5.6			5.6	IIIA

[†] Full range is – 40°C to 105°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS192 - FEBRUARY 1997

TLE20x7I operating characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V, T_A = 25°C (unless otherwise specified)

	DADAMETED	TEST CONDIT			TLE20x7I		1	LE20x7AI		UNIT
	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$R_L = 2 k\Omega$,	TLE2027	1.7	2.8		1.7	2.8		
		See Figure 1	TLE2037	6	7.5		6	7.5		
SR	Slew rate at unity gain	R _L = 2 kΩ, C _L = 100 pF,	TLE2027	1.1			1.1			V/µs
		$T_A = -40^{\circ}C$ to $85^{\circ}C$, See Figure 1	TLE2037	4.7			4.7			
V	Equivalent input noise	R _S = 20 Ω,	f = 10 Hz		3.3	8		3.3	4.5	
⊻n	voltage (see Figure 2)	R _S = 20 Ω,	f = 1 kHz		2.5	4.5		2.5	3.8	110/0112
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz			50	250		50	130	nV
	Equivalent input noise	f = 10 Hz			1.5	4		1.5	4	
l'n	current	f = 1 kHz			0.4	0.6		0.4	0.6	pa/vHz
тир	Total harmonia distortion	$V_O = +10 V$, A _{VD} = 1, See Note 5	TLE2027		< 0.002%			< 0.002%		
טחיו		$V_O = +10 V$, A _{VD} = 5, See Note 5	TLE2037		< 0.002%			< 0.002%		
в,	Unity-gain bandwidth	$R_L = 2 k\Omega$,	TLE2027	7	13		9	13		
P1	(see Figure 3)	C _L = 100 pF	TLE2037	35	50		35	50		
Pour	Maximum output-swing	$P_{1} = 2kO$	TLE2027		30			30		↓ ⊔→
POW	bandwidth		TLE2037		80			80		KI IZ
ф	Phase margin at unity	$R_L = 2 k\Omega$,	TLE2027		55°			55°		
Ψm	gain (see Figure 3)	C _L = 100 pF	TLE2037		50°			50°		

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

TLE20x7M electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V (unless otherwise noted)

	DADAMETED	TERT CONDITIONS	_ +	Т	LE20x7N	Λ	TL	E20x7A	M	
	PARAMETER	TEST CONDITIONS	TAI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vie	Input offset voltage		25°C		20	100		10	25	
VI0	input onset voltage		Full range			200			105	μv
α _{VIO}	Temperature coefficient of input offset voltage		Full range		0.4	1*		0.2	1*	μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0$, $R_S = 50 \Omega$	25°C		0.006	1*		0.006	1*	μV/mo
	Input offset current		25°C		6	90		6	90	nA
OI	input onset current		Full range			150			150	
lup.	Input bias current		25°C		15	90		15	90	nΔ
чв	input bias current		Full range			150			150	
	Common-mode input	5 50.0	25°C	-11 to 11	-13 to 13		-11 to 11	-13 to 13		
VICR	voltage range	$R_{S} = 50 \Omega$	Full range	-10.3 to 10.3			-10.4 to 10.4			V
		D: 600 O	25°C	10.5	12.9		10.5	12.9		
N	Maximum positive peak	RL = 000 02	Full range	10			10			V
V _{OM +}	output voltage swing	$P_{\rm r} = 2k0$	25°C	12	13.2		12	13.2		v
			Full range	11			11			
		$R_{\rm L} = 600 \Omega$	25°C	-10.5	-13		-10.5	-13		
VoM	Maximum negative peak	NL = 000 32	Full range	-10			-10			V
	output voltage swing	$R_1 = 2 k\Omega$	25°C	- 12	-13.5		- 12	-13.5		v
			Full range	- 11			- 11			
		$V_{O} = \pm 11 V$, $R_{L} = 2 k\Omega$	25°C	5	45		10	45		
	Lorge signal differential	$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	Full range	2.5			3.5			
AVD	voltage amplification	$V_{\Omega} = \pm 10 V. R_{I} = 1 k\Omega$	25°C	3.5	38		8	38		V/μV
			Full range	1.8			2.2			
		V_{O} = ±10 V, R _L = 600 Ω	25°C	2	19		5	19		
Ci	Input capacitance		25°C		8			8		pF
z ₀	Open-loop output impedance	I _O = 0	25°C		50			50		Ω
CMRR	Common-mode rejection	V _{IC} = V _{ICR} min,	25°C	100	131		117	131		dB
CIVILAT	ratio	R _S = 50 Ω	Full range	96			113			uв
kovio	Supply-voltage rejection	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V},$ R _S = 50 Ω	25°C	94	144		110	144		dB
^SVR	ratio ($\Delta V_{CC\pm} / \Delta V_{IO}$)	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V,}$ R _S = 50 Ω	Full range	90			105			uD
	Supply autroct		25°C		3.8	5.3		3.8	5.3	~^^
^{iCC}	Supply current	vO = 0, ino load	Full range			5.6			5.6	ша

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] Full range is -55° C to 125° C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS192 - FEBRUARY 1997

TLE20x7M operating characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V, T_A = 25°C (unless otherwise specified)

		TEST CONDITI	ONS		TLE20x7M		Т	LE20x7AM		UNIT
	PARAMETER	TEST CONDITI	UNS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$R_L = 2 k\Omega$,	TLE2027	1.7	2.8		1.7	2.8		
		See Figure 1	TLE2037	6*	7.5		6*	7.5		
SR	Slew rate at unity gain	R _L = 2 kΩ, C _L = 100 pF,	TLE2027	1			1			V/µs
		$T_{A}^{-} = -55^{\circ}C$ to 125°C, See Figure 1	TLE2037	4.4*			4.4*			
V.	Equivalent input noise	R _S = 20 Ω,	f = 10 Hz		3.3	8*		3.3	4.5*	n)///
⊻n	voltage (see Figure 2)	R _S = 20 Ω,	f = 1 kHz		2.5	4.5*		2.5	3.8*	IIV/\\TZ
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz			50	250*		50	130*	nV
	Equivalent input noise	f = 10 Hz			1.5	4*		1.5	4*	
In	current	f = 1 kHz			0.4	0.6*		0.4	0.6*	pa/vHz
TUD	Total barrania distation	$V_O = +10 V$, A _{VD} = 1, See Note 5	TLE2027		< 0.002%			< 0.002%		
שחו		$V_O = +10 V$, AVD = 5, See Note 5	TLE2037		< 0.002%			< 0.002%		
в,	Unity-gain bandwidth	R _L = 2 kΩ,	TLE2027	7*	13		9*	13		
P1	(see Figure 3)	C _L = 100 pF	TLE2037	35	50		35	50		
Boy	Maximum output-swing	$P_{L} = 2kO$	TLE2027		30			30		kH7
^{DOM}	bandwidth		TLE2037		80			80		NI IZ
φ	Phase margin at unity	$R_L = 2 k\Omega$,	TLE2027		55°			55°		
Ψm	gain (see Figure 3)	C _L = 100 pF	TLE2037		50°			50°		

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

TLE20x7Y electrical characteristics, V_{CC±} = ±15 V, T_A = 25°C (unless otherwise noted)

		TERT CONDITIONS	TLE20x7	ſ	LINUT
	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
VIO	Input offset voltage		20		μV
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0$, $R_S = 50 \Omega$	0.006		μV/mo
Iю	Input offset current		6		nA
I _{IB}	Input bias current		15		nA
VICR	Common-mode input voltage range	R _S = 50 Ω	-13 to 13		V
Vou	Maximum positive peak output voltage swing	R _L = 600 Ω	12.9		V
VOM +	Maximum positive peak output voltage swing	$R_L = 2 k\Omega$	13.2		v
Volu	Maximum pegative peak output voltage swing	R _L = 600 Ω	-13		V
<u>v</u> OM –	waxinum negative peak output voltage swing	$R_L = 2 k\Omega$	- 13.5		v
		$V_{O} = \pm 11 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	45		
AVD	l arge-signal differential voltage amplification	$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega$	38		V/uV
NVD		$V_{O} = \pm 10 \text{ V},$ R _L = 600 Ω	19		v,µ.v
Ci	Input capacitance		8		pF
z _o	Open-loop output impedance	IO = 0	50		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ R _S = 50 Ω	131		dB
k SVR	Supply-voltage rejection ratio ($\Delta V_{CC\pm} / \Delta V_{IO}$)	$V_{CC\pm} = \pm 4 \text{ V to } \pm 18 \text{ V,}$ R _S = 50 Ω	144		dB
ICC	Supply current	$V_{O} = 0$, No load	3.8		mA

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS192 - FEBRUARY 1997

TLE20x7Y op	perating characterist	cs at specified free-air	temperature, V _{CC \pm} = ±15 V
-------------	-----------------------	--------------------------	---

	DADAMETED	TEST CONDITION	TLE20x7Y			LINUT	
	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	
ep	Slow rate at unity gain	$R_{L} = 2 k\Omega$, $C_{L} = 100 pF$,	TLE2027	2.8 7.5			V/µs
SK	Siew rate at unity gain	See Figure 1	TLE2037				
V	Equivalent input poise voltage (con Figure 2)	$R_{S} = 20 \Omega$, f = 10 Hz			3.3	nV/√Hz	
۷n	Equivalent input hoise voltage (see Figure 2)	$R_S = 20 \Omega$, $f = 1 \text{ kHz}$		2.5			
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz			50		nV
	Equivalent input poise current	f = 10 Hz	1.5			pA/√Hz	
'n	Equivalent input hoise current	f = 1 kHz	0.4				
THD		$V_O = +10 V$, $A_{VD} = 1$, See Note 5	TLE2027		< 0.002%		
	Total narmonic distortion	$V_O = +10 V$, $A_{VD} = 5$, See Note 5	TLE2037		< 0.002%		
в,	Lipity gain bandwidth (cap Figure 2)	$P_{1} = 2 k_{0} + 0 = 100 pE$	TLE2027	13			MU-7
P1	Unity-gain bandwidth (see Figure 3)	$R_{L} = 2 R_{22}, C_{L} = 100 \text{ pr}$	TLE2037		50		
Revi	Maximum output swing bandwidth	$P_{\rm r} = 2 k \Omega$	TLE2027	30			kU7
POM	Maximum output-swing bandwidth		TLE2037		80		КПД
<u>ь</u>	Phase margin at unity gain (can Figure 2)	$P_{\rm L} = 2 k \Omega$ $C_{\rm L} = 100 pE$	TLE2027		55°		
Ψm	Thase margin at unity gall (see Figure 5)	$112 - 2 \times 22, 02 = 100 \text{ pr}$	TLE2037	50°]	

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_L includes fixture capacitance.

Figure 1. Slew-Rate Test Circuit

NOTE A: CL includes fixture capacitance.

Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit (TLE2027 Only)

Figure 2. Noise-Voltage Test Circuit

NOTES: A. CL includes fixture capacitance. B. For the TLE2037 and TLE2037A, A_{VD} must be \geq 5.

Figure 4. Small-Signal Pulse-Response Test Circuit

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

initial estimates of parameter distributions

In the ongoing program of improving data sheets and supplying more information to our customers, Texas Instruments has added an estimate of not only the typical values but also the spread around these values. These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown at the points where data was actually collected. The 95% and 5% points are used instead of \pm 3 sigma since some of the distributions are not true Gaussian distributions.

The number of units tested and the number of different wafer lots used are on all of the graphs where distribution bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always the case on newly released products since there can only be data available from a few wafer lots.

The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices fell outside every distribution bar.

Figure 5. Sample Graph With Distribution Bars

TYPICAL CHARACTERISTICS

Table of Graphs

VIO	Input offset voltage	Distribution	6, 7			
ΔV_{IO}	Input offset voltage change	vs Time after power on	8, 9			
IIO	Input offset current	vs Free-air temperature	10			
IB	Input bias current	vs Free-air temperature vs Common-mode input voltage	11 12			
lj	Input current	vs Differential input voltage	13			
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	14, 15			
VOM	Maximum (positive/negative) peak output voltage	vs Load resistance vs Free-air temperature	16, 17 18, 19			
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Load resistance vs Frequency vs Free-air temperature	20 21 22 – 25 26			
z ₀	Output impedance	vs Frequency	27			
CMRR	Common-mode rejection ratio	vs Frequency	28			
k SVR	Supply-voltage rejection ratio	vs Frequency	29			
los	Short-circut output current	vs Supply voltage vs Elapsed time vs Free-air temperature	30, 31 32, 33 34, 35			
ICC	Supply current	vs Supply voltage vs Free-air temperature	36 37			
	Voltage-follower pulse response	Small signal Large signal	38, 40 39, 41			
Vn	Equivalent input noise voltage	vs Frequency	42			
	Noise voltage (referred to input)	Over 10-second interval	43			
B ₁	Unity-gain bandwidth	vs Supply voltage vs Load capacitance	44 45			
	Gain bandwidth product	vs Supply voltage vs Load capacitance	46 47			
SR	Slew rate	vs Free-air temperature	48, 49			
φ _m	Phase margin	vs Supply voltage vs Load capacitance vs Free-air temperature	50, 51 52, 53 54, 55			
	Phase shift	vs Frequency	22 – 25			

SLOS192 - FEBRUARY 1997

TYPICAL CHARACTERISTICS

SLOS192 – FEBRUARY 1997

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

SLOS192 - FEBRUARY 1997

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

SLOS192 - FEBRUARY 1997

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

SLOS192 - FEBRUARY 1997

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

input offset voltage nulling

The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not needed, the null pins may be left disconnected.

Figure 55. Input Offset Voltage Nulling Circuits

voltage-follower applications

The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 k Ω , this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).

Figure 56. Voltage Follower

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Gain-bandwidth product
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

Figure 57. Boyle Macromodel

PSpice and Parts are trademarks of MicroSim Corporation.

APPLICATION INFORMATION

macromodel information (continued)

.subckt	TLE202	7 1 2	34	5		q2	12	1	14	qx
*						r2	б	9	100	.0E3
c1	11	12	4.0	03E-	12	rcl	3	11	530	.5
c2	6	7	20.	00E-	12	rc2	3	12	530	.5
dc	5	53	dz			rel	13	10	-39	3.2
de	54	5	dz			re2	14	10	-39	3.2
dlp	90	91	dz			ree	10	99	3.5	71E6
dln	92	90	dx			rol	8	5	25	
dp	4	3	dz			ro2	7	99	25	
egnd	99	0	pol	y(2)	(3,0)	rp	3	4	8.0	13E3
(4,0) 0	5.5					vb	9	0	dc	0
fb	7	99	pol	y(5)	vb vc	VC	3	53	dc	2.400
ve vlp v	ln 0 9	54.8E	6 -1	E9 1	E9 1E9	ve	54	4	dc	2.100
-1E9						vlim	7	8	dc	0
ga	б	0	11	12		vlp	91	0	dc	40
2.062E-3						vln	0	92	dc	40
gcm	0	6	10	99		.modeldx	D(Is=	800.0)E-18)
531.3E-1	2					.modelqx	NPN(I	s=800).0E-	18
iee	10	4	dc	56.	01E-6	Bf=7.0001	E3)			
hlim	90	0	vli	m 1K		.ends				
ql	11	2	13	dx						

Figure 58. TLE2027 Macromodel Subcircuit

.subckt	TLE203	71	2 3 4 5	q2	12	1	14	qz
*				r2	6	9	100	.0E3
cl	11	12	4.003E-12	rcl	3	11	471	.5
c2	6	7	7.500E-12	rc2	3	12	471	.5
dc	5	53	dz	rel	13	10	A44	8
de	54	5	dz	re2	14	10	A44	8
dlp	90	91	dz	ree	10	99	3.5	55E6
dln	92	90	dx	rol	8	5	25	
dp	4	3	dz	ro2	7	99	25	
egnd	99	0	poly(2) (3,0)	rp	3	4	8.0	13E3
(4)	,0) 0	.5	.5	vb	9	0	dc	0
fb	7	99	poly(5) vb vc	VC	3	53	dc	2.400
ve	vip vl	n 0	923.4E6 A800E6	ve	54	4	dc	2.100
800)E6 800	Еб А	A800E6	vlim	7	8	dc	0
ga	6	0	11 12 2.121E-3	vlp	91	0	dc	40
gcm	0	б	10 99 597.7E-12	vln	0	92	dc	40
iee	10	4	dc 56.26E-6	.model	dxD(Is=800.0E-18)			E-18)
hlim	90	0	vlim 1K	.model	qxNPN(Is=800.0E-18			
ql	11	2	13 qx	Bf=7.0)31E3)		
				.ends				

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated