- 5- Ω Switch Connection Between Two Ports

- TTL-Compatible Input Levels
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV), and 300-mil Shrink Small-Outline (DL) Packages

description

The SN74CBT16213 provides 24 bits of high-speed TTL-compatible bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device operates as a 24 -bit bus switch or a 12-bit bus exchanger that provides data exchanging between the four signal ports via the data-select (S0-S2) terminals.
The SN74CBT16213 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			INPUTS/OUTPUTS		FUNCTION
S2	S1	S0	A1	A2	
L	L	L	Z	Z	Disconnect
L	L	H	B1	Z	A1 port = B1 port
L	H	L	B2	Z	A1 port = B2 port
L	H	H	Z	B1	A2 port = B1 port
H	L	L	Z	B2	A2 port = B2 port
H	L	H	A2 and B2	A1 and B2	A1 port = A2 port = B2 port
H	H	L	B1	B2	A1 port = B1 port A2 port = B2 port
H	H	H	B2	B1	A1 port = B2 port A2 port = B1 port

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74CBT16213

24-BIT FET BUS-EXCHANGE SWITCH

SCDS026F - MAY 1995 - REVISED MAY 1998
logic diagram (positive logic)

SN74CBT16213 24-BIT FET BUS-EXCHANGE SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

		MIN	MAX
V_{CC}	UNIT		
V_{IH}	High-level control input voltage	4	5.5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage	V	
T_{A}	Operating free-air temperature	2	V

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYPキ	MAX	UNIT
VIK		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2	V
I		$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND				± 1	
${ }^{\text {ICC }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{O}=0$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			3	$\mu \mathrm{A}$
$\Delta_{\text {CC }}{ }^{\text {§ }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	One input	Other inputs at V_{CC} or GND			2.5	mA
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0				4.5		pF
$\mathrm{C}_{\mathrm{io}}(\mathrm{OFF})$	B port	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0,	$\mathrm{S} 0, \mathrm{~S} 1$, or $\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}}$			8.5		pF
	A port					8		
$\mathrm{ron}^{\text {I }}$	A to B or B to A	$\begin{aligned} & \mathrm{V} \mathrm{CC}=4 \mathrm{~V}, \\ & \mathrm{TYP} \text { at } \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		14	20	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$V_{\text {I }}=0$	$\mathrm{I}_{1}=64 \mathrm{~mA}$		5	7	
				$\mathrm{I}_{1}=30 \mathrm{~mA}$		5	7	
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \quad \mathrm{I}=15 \mathrm{~mA}$			8	15	
	A1 to A2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \\ & \mathrm{TYP} \text { at } \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}_{1}=15 \mathrm{~mA}$		22	30	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$V_{\text {I }}=0$	$\mathrm{I}_{1}=64 \mathrm{~mA}$		10	14	
				$l_{1}=30 \mathrm{~mA}$		10	14	
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \quad \mathrm{I}=15 \mathrm{~mA}$			16	22	

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
Il Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SN74CBT16213

24-BIT FET BUS-EXCHANGE SWITCH

SCDS026F - MAY 1995 - REVISED MAY 1998
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$	UNIT
			MIN MAX	MIN MAX	
${ }_{\text {pd }}{ }^{\dagger}$	A or B	B or A	0.35	0.25	ns
	A1	A2	0.5	0.5	
$t_{\text {en }}$	S	A or B	12.4	3.211 .1	ns
$\mathrm{t}_{\text {dis }}$	S	A or B	12.4	2.311 .9	ns
ten	S0	A2 and B2	11.5	$4 \quad 10.9$	ns
$\mathrm{t}_{\text {dis }}$	S0	A2 and B2	12.8	5.712	ns

\dagger The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement
E. tPLZ and tPHZ are the same as $t_{\text {dis }}$.
F. tpZL and tPZH are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

