SN74CBTLV3383 LOW-VOLTAGE 10-BIT FET BUS-EXCHANGE SWITCH

3A1 [

12

GND [

SCDS047D - MARCH 1998 - REVISED NOVEMBER 1999

14 3A2

13 BX

Functionally Equivalent to QS3383 and DBQ, DGV, DW, OR PW PACKAGE (TOP VIEW) QS3L383 5- Ω Switch Connection Between Two Ports 24 🛮 V_{CC} BE **Isolation Under Power-Off Conditions** 23 5B2 1B1 | 2 1A1 [22 5A2 **ESD Protection Exceeds 2000 V Per** 1A2 Π 21 5A1 MIL-STD-883, Method 3015; Exceeds 200 V 1B2 **5** 20 5B1 Using Machine Model (C = 200 pF, R = 0) 2B1 6 19 4B2 Latch-Up Performance Exceeds 250 mA Per 2A1 [7 **JESD 17** 2A2 [17 ¶ 4A1 8 **Package Options Include Shrink** 16 4B1 2В2 П 9 Small-Outline (DBQ), Thin Very 3В1 П 15 3B2 10 Small-Outline (DGV), Small-Outline (DW),

description

Packages

and Thin Shrink Small-Outline (PW)

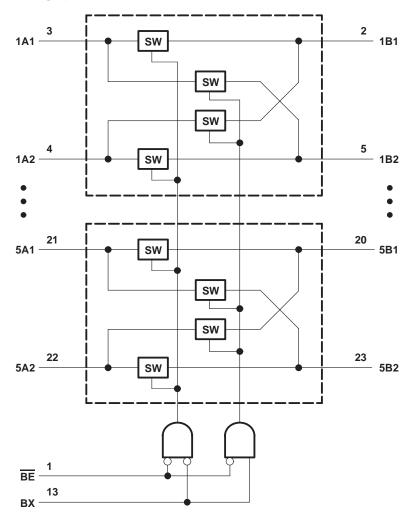
The SN74CBTLV3383 provides ten bits of high-speed bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The device operates as a 10-bit bus switch or a 5-bit bus exchanger, which provides swapping of the A and B pairs of signals. The bus-exchange function is selected when BX is high and \overline{BE} is low.

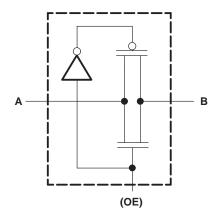
The SN74CBTLV3383 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS		
BE	вх	1A1-5A1	1A2-5A2	
L	L	1B1-5B1	1B2-5B2	
L	Н	1B2-5B2	1B1-5B1	
Н	Χ	Z	Z	



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SCDS047D - MARCH 1998 - REVISED NOVEMBER 1999

logic diagram (positive logic)

simplified schematic, each FET switch

SCDS047D - MARCH 1998 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)		0.5 V to 4.6 V
Continuous channel current		128 mA
Input clamp current, I_{IK} ($V_{I/O} < 0$)		–50 mA
Package thermal impedance, θ _{JA} (see Note 2):	: DBQ package	61°C/W
	DGV package	86°C/W
	DW package	46°C/W
	PW package	88°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage	age			V
VIH	High-level control input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
	High-level control input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		V
V _{IL} L	V _{CC} = 2.3 V to 2.7 V		0.7	V	
	Low-level control input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAI	RAMETER		TEST CONDITION	ONS	MIN TYP‡	MAX	UNIT
VIK		V _{CC} = 3 V,	I _I = -18 mA			-1.2	V
lį		$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND			±1	μΑ
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 3.6 V			10	μΑ
Icc		$V_{CC} = 3.6 \text{ V},$	I _O = 0,	$V_I = V_{CC}$ or GND		10	μΑ
∆lcc§	Control inputs	$V_{CC} = 3.6 \text{ V},$	One input at 3 V,	Other inputs at V _{CC} or GND		300	μΑ
Ci	Control inputs	V _I = 3 V or 0			3.5		pF
C _{io(OFF}	F)	$V_0 = 3 \ V \ or \ 0,$	BE = VCC		13.5		pF
ron¶	$V_{CC} = 2.3 \text{ V},$ TYP at $V_{CC} = 2.5 \text{ V}$	V _I = 0	I _I = 64 mA	5	8		
			I _I = 24 mA	5	8		
		V _I = 1.7 V,	I _I = 15 mA	27	40	Ω	
	V _{CC} = 3 V	V _I = 0	I _I = 64 mA	5	7	22	
			I _I = 24 mA	5	7		
		V _I = 2.4 V,	I _I = 15 mA	10	15		

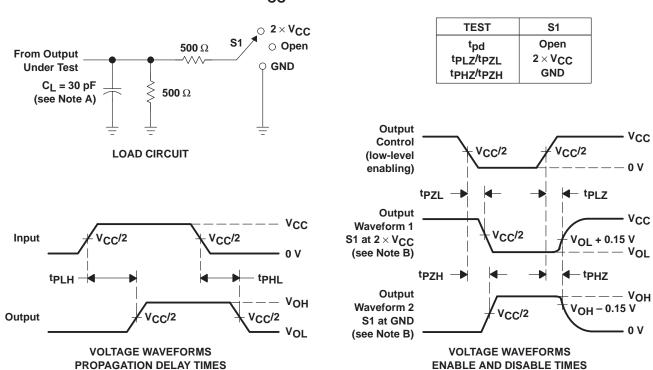
[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}\text{C}$.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

[§] This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

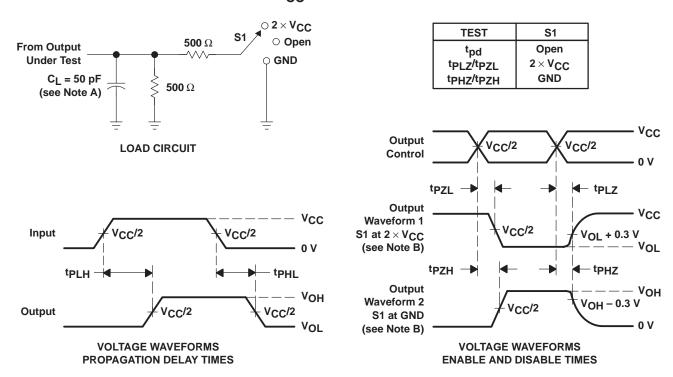

SCDS047D - MARCH 1998 - REVISED NOVEMBER 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INFOT)	(001F01)	MIN	MAX	MIN	MAX	
t _{pd} †	A or B	B or A		0.15		0.25	ns
t _{pd}	ВХ	A or B	1.5	5.8	1.5	4.7	ns
t _{en}	BE	A or B	1.5	5.3	1.5	4.7	ns
t _{dis}	BE	A or B	1	6	1	6	ns

[†] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 V \pm 0.2 V$



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated