SN54LV4052A, SN74LV4052A DUAL 4-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS

SCLS429 - MAY 1999

- Operating Range $2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$
- EPICTM (Enhanced-Performance Implanted CMOS) Process
- Fast Switching
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Extremely Low Input Current
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Package Options Include Plastic Small-Outline (D, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), Thin Shrink Small-Outline (PW), Ceramic Flat (W) Packages, and Plastic (N) and Ceramic (J) DIPs

SN54LV4052A... J OR W PACKAGE
SN74LV4052A ... D, DB, DGV, N, NS, OR PW PACKAGE (TOP VIEW)

description

These dual 4-channel CMOS analog multiplexers/demultiplexers are designed for $2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The 'LV4052A devices handle both analog and digital signals. Each channel permits signals with amplitudes up to 5.5 V (peak) to be transmitted in either direction.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

The SN54LV4052A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LV4052A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

INPUTS			
CHANNEL			
INH	B	A	CH
L	L	L	$1 \mathrm{Y} 0,2 \mathrm{Y} 0$
L	L	H	$1 \mathrm{Y} 1,2 \mathrm{Y} 1$
L	H	L	$1 \mathrm{Y} 2,2 \mathrm{Y} 2$
L	H	H	$1 \mathrm{Y} 3,2 \mathrm{Y} 3$
H	X	X	None

DUAL 4-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS

SCLS429 - MAY 1999
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

SN54LV4052A, SN74LV4052A DUAL 4-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS

SCLS429 - MAY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 4)

			SN54LV4052A		SN74LV4052A		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		$2 \ddagger$	5.5	$2 \ddagger$	5.5	V
V_{IH}	High-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		1.5		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	\$	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
VIL	Low-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		0.5		0.5	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{C} \times 0.3$		$\mathrm{C} \times 0.3$	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		$\mathrm{C} \times 0.3$		$\mathrm{C} \times 0.3$	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	\bigcirc	C $\times 0.3$		C $\times 0.3$	
V_{1}	Control input voltage		0	5.5	0	5.5	V
V_{10}	Input/output voltage		0	V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
$\Delta t / \Delta v$	Input transition rise or fall rate	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	0	200	0	200	ns / V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	0	100	0	100	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	0	20	0	20	
	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

\ddagger With supply voltages at or near 2 V , the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.
NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS429 - MAY 1999
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER		TEST CONDITIONS	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54LV4052A	SN74LV4052A	UNIT	
		MIN TYP		MAX	MIN MAX	MIN MAX			
$\mathrm{R}_{\text {On }}$	On-state switch resistance		$\begin{array}{\|l} \hline \mathrm{IT}=2 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ \mathrm{V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \\ \text { (see Figure } 1 \text {) } \end{array}$	2.3 V	43	180	225	225	Ω
		3 V		34	150	190	190		
		4.5 V		25	75	100	100		
$\mathrm{R}_{\text {On(p) }}$	Peak on-state resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3 V	133	500	600	600	Ω	
			3 V	63	180	225	225		
			4.5 V	35	100	125	125		
$\Delta \mathrm{R}_{\text {On }}$	Difference in on-state resistance between switches	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3 V	1.5	30	40	40	Ω	
			3 V	1.1	20	30	30		
			4.5 V	0.7	15	20	20		
1	Control input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	5.5 V		± 0.1	± 1	± 1	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {soff }}$	Off-state switch leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { and } \mathrm{V}_{\mathrm{O}}=\mathrm{GND} \text {, or } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\text {INH }}=\mathrm{V}_{\text {IH }} \\ & \text { (see Figure 2) } \end{aligned}$	5.5 V		± 0.1	$\hat{0}^{Q^{k}} \pm 1$	± 1	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {son }}$	On-state switch leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\text {INH }}=\mathrm{V}_{\mathrm{IL}} \\ & \text { (see Figure 3) } \end{aligned}$	5.5 V		± 0.1		± 1	$\mu \mathrm{A}$	
${ }^{\text {CCC }}$	Supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	5.5 V			20	20	$\mu \mathrm{A}$	
$\mathrm{CIC}^{\text {c }}$	Control input capacitance	$\mathrm{f}=10 \mathrm{MHz}$	3.3 V	2.1				pF	
CIS	Common terminal capacitance		3.3 V	13.1				pF	
Cos	Switch terminal capacitance		3.3 V	5.6				pF	
C_{\top}	Feed through capacitance		3.3 V	0.5				pF	

SN54LV4052A, SN74LV4052A DUAL 4-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS

SCLS429 - MAY 1999
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54LV4052A	SN74LV4052A	UNIT	
		MIN			TYP	MAX	MIN MAX	MIN MAX			
tPLH, tpHL	Propagation delay time		COM or Y	Y or COM	$C_{L}=15 \mathrm{pF},$ (see Figure 4)		1.9	10	16	16	ns
$\begin{aligned} & \text { tPZH, } \\ & \text { tPZL } \end{aligned}$	Enable delay time	INH	COM or Y	$C_{L}=15 \mathrm{pF}$ (see Figure 5)		8	18	23	23	ns	
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	Disable delay time	INH	COM or Y	$C_{L}=15 \mathrm{pF}$ (see Figure 5)		8.3	18	$Q^{4} 23$	23	ns	
tpLH, tPHL	Propagation delay time	COM or Y	Y or COM	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		3.8	12	\% 18	18	ns	
tpZH, tpZL	Enable delay time	INH	COM or Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure 5) } \end{aligned}$		9.4	28	$Q \quad 35$	35	ns	
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	Disable delay time	INH	COM or Y	$C_{L}=50 \mathrm{pF}$ (see Figure 5)		12.4	28	35	35	ns	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54LV4052A	SN74LV4052A	UNIT	
		MIN			TYP	MAX	MIN MAX	MIN MAX			
tPLH, tPHL	Propagation delay time		COM or Y	Y or COM	$C_{L}=15 \mathrm{pF}$ (see Figure 4)		1.2	6	10	10	ns
$\begin{aligned} & \text { tPZH, } \\ & \text { tPZL } \end{aligned}$	Enable delay time	INH	COM or Y	$C_{L}=15 \mathrm{pF},$ (see Figure 5)		5.7	12	45	15	ns	
$\begin{aligned} & \text { tpHZ, } \\ & \text { tPLZ } \end{aligned}$	Disable delay time	INH	COM or Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { (see Figure } 5 \text {) } \end{aligned}$		6.6	12	$)^{4} 15$	15	ns	
tPLH, tPHL	Propagation delay time	COM or Y	Y or COM	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		2.5	9	12	12	ns	
tpZH, tpZL	Enable delay time	INH	COM or Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & (\text { see Figure } 5 \text {) } \end{aligned}$		6.7	20	Q 25	25	ns	
$\begin{aligned} & \text { tpHZ, } \\ & \text { tPLZ } \end{aligned}$	Disable delay time	INH	COM or Y	$C_{L}=50 \mathrm{pF}$ (see Figure 5)		9.5	20	25	25	ns	

SCLS429 - MAY 1999
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54LV4052A	SN74LV4052A	UNIT	
		MIN			TYP	MAX	MIN MAX	MIN MAX			
tPLH, tPHL	Propagation delay time		COM or Y	Y or COM	$C_{L}=15 \mathrm{pF}$ (see Figure 4)		0.7	4	7	7	ns
tpZH, tpZL	Enable delay time	INH	COM or Y	$C_{L}=15 \mathrm{pF},$ (see Figure 5)		4	8	10	10	ns	
tPHZ, tPLZ	Disable delay time	INH	COM or Y	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { (see Figure } 5 \text {) } \end{aligned}$		5	8	$2^{4} 10$	10	ns	
tPLH, tPHL	Propagation delay time	COM or Y	Y or COM	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		1.5	6	\bigcirc	8	ns	
tpZH, tPZL	Enable delay time	INH	COM or Y	$C_{L}=50 \mathrm{pF},$ (see Figure 5)		4.7	14	Q 18	18	ns	
tPHZ, tpLZ	Disable delay time	INH	COM or Y	$C_{L}=50 \mathrm{pF},$ (see Figure 5)		6.9	14	18	18	ns	

analog switch characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS		VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		UNIT	
					MIN TYP	MAX			
Frequency response (switch on)	COM or Y	Y or COM	$\begin{array}{\|l} \hline C_{L}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ \mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz} \text { (sine wave) } \\ \text { (see Note } 5 \text { and Figure 6) } \end{array}$			2.3 V	30		MHz
					3 V	35			
					4.5 V	50			
Crosstalk (between any switches)	COM or Y	Y or COM	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=600 \Omega, \\ & \mathrm{fin}_{\mathrm{in}}=1 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Note } 6 \text { and Figure 7) } \end{aligned}$		2.3 V	-45		dB	
					3 V	-45			
					4.5 V	-45			
Crosstalk (control input to signal output)	INH	COM or Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} \text { (square wave) } \\ & \text { (see Figure 8) } \end{aligned}$		2.3 V	20		mV	
					3 V	35			
					4.5 V	65			
Feed through attenuation (switch off)	COM or Y	Y or COM	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=600 \Omega, \\ & \mathrm{fin}_{\mathrm{in}}=1 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Note } 6 \text { and Figure 9) } \end{aligned}$		2.3 V	-45		dB	
					3 V	-45			
					4.5 V	-45			
Sine-wave distortion	COM or Y	Y or COM	$\begin{array}{\|l} C_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ \mathrm{fin}^{2}=1 \mathrm{kHz} \\ \text { (sine wave) } \\ \text { (see Figure 10) } \\ \hline \end{array}$	$V_{1}=2 V_{p-p}$	2.3 V	0.1			
				$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}_{\mathrm{p} \text {-p }}$	3 V	0.1			
				$V_{l}=4 V_{p-p}$	4.5 V	0.1			

NOTES: 5. Adjust $f_{i n}$ voltage to obtain 0 dBm at output. Increase f_{in} frequency until dB meter reads -3 dB .
6. Adjust f_{in} voltage to obtain 0 dBm at input.
operating characteristics, $\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathbf{C}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{pd}} \quad$ Power dissipation capacitance | | 11.8 | pF |

PARAMETER MEASUREMENT INFORMATION

Figure 1. On-State Resistance Test Circuit

Figure 2. Off-State Switch Leakage-Current Test Circuit

Figure 3. On-State Switch Leakage-Current Test Circuit

DUAL 4-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS

PARAMETER MEASUREMENT INFORMATION

Figure 4. Propagation Delay Time, Signal Input to Signal Output

Figure 5. Switching Time (tpZL, tpLZ, $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$), Control to Signal Output

PARAMETER MEASUREMENT INFORMATION

NOTE A: $f_{i n}$ is a sine wave.
Figure 6. Frequency Response (Switch On)

Figure 7. Crosstalk Between Any Two Switches

Figure 8. Crosstalk Between Control Input and Switch Output

PARAMETER MEASUREMENT INFORMATION

Figure 9. Feed Through Attenuation (Switch Off)

Figure 10. Sine-Wave Distortion

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

