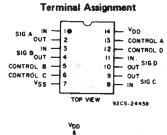
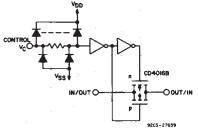


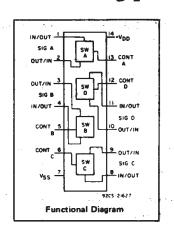
Data sheet acquired from Harris Semiconductor SCHS026

CMOS Quad Bilateral Switch


For Transmission or Multiplexing of Analog or Digital Signals


High-Voltage Types (20-Volt Rating)

■ CD4016B Series types are quad bilateral switches intended for the transmission or multiplexing of analog or digital signals. Each of the four independent bilateral switches has a single control signal input which simultaneously biases both the p and n device in a given switch on or off.


The CD4016 "B" Series types are supplied in 14-lead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD4016B Types

Schematic diagram - 1 of 4 identical sections.

Features:

- 20-V digital or ± 10-V peak-to-peak switching
- \blacksquare 280- Ω typical on-state resistance for 15-V operation
- Switch on-state resistance matched to within 10 Ω typ. over 15-V signal-input range
- High on/off output-voltage ratio: 65 dB typ. @ f_{is} = 10 kHz, R_L = 10 k Ω
- High degree of linearity: <0.5% distortion typ. @ f_{is} = 1 kHz, V_{is} = 5 V_{p-p} , V_{DD} - V_{SS} \geqslant 10 V, R L = 10 k Ω
- Extremely low off-state switch leakage resulting in very low offset current and high effective off-state resistance:
 100 pA typ. @ VDD-VSS=18 V, TA=25°C
- \blacksquare Extremely high control input impedance (control circuit isolated from signal circuit: 1012 Ω typ.
- Low crosstalk between switches:
 -50 dB typ. @ f_{is} = 0.9 MHz, R_L = 1 kΩ
- Matched control-input to signal-output capacitance:
 - Reduces output signal transients
- Frequency response, switch on = 40 MHz
- 100% tested for quiescent current at 20 V
- Maximum control input current of 1 μA
 at 18 V over full package temperature range; 100 nA at 18 V at 25°C
- 5-V, 10-V, and 15-V parametric ratings Applications:
- Analog signal switching/multiplexing
 Signal gating
 Modulator
 Squelch control
 Demodulator
 Chopper
 Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital & digital-toanalog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following range:

CHARACTERISTIC	LIN	UNITS	
- CHAILAGT ETTIGITG	Min.	Max.	0.41.3
Supply Voltage Range (For T _A = Full Package Temperature Range)	3	18	٧

MAXIMUM RATINGS, Absolute-Maximum Values:

PLY-VOLTAGE RANGE, (V _{DD})		SUPPLY-VOLTAGE RANGE, (V _{DD})
es referenced to V _{SS} Terminal)		bitages referenced to VSS Terminal)
OLTAGE RANGE, ALL INPUTS0.5V to V _{DD} +0.	0.5V to	UT VOLTAGE RANGE, ALL INPUTS
JT CURRENT, ANY ONE INPUT±10r		INPUT CURRENT, ANY ONE INPUT
DISSIPATION PER PACKAGE (PD):		WER DISSIPATION PER PACKAGE (PD):
\= -55°C to +100°C500m		or T _A = -55°C to +100°C
x = +100°C to +125°C Derate Linearity at 12mW/°C to 200m	Derate Linearity at 12mW/O(or T _A = +100°C to +125°C
DISSIPATION PER OUTPUT TRANSISTOR	R	ICE DISSIPATION PER OUTPUT TRANS
A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	NGE (All Package Types)	OR $T_A = FULL PACKAGE-TEMPERATUR$
TING-TEMPERATURE RANGE (TA)55°C to +125	55°C	RATING-TEMPERATURE RANGE (TA)
GE TEMPERATURE RANGE (T _{stg})65°C to +150	65°C	RAGE TEMPERATURE RANGE (Tstg)
EMPERATURE (DURING SOLDERING):	\$	D TEMPERATURE (DURING SOLDERIN
ence 1/16 + 1/32 inch /1 59 + 0.79mm\ from case for 10e may +265	om case for 10e may	distance 1/16 + 1/32 inch /1 59 + 0 79m

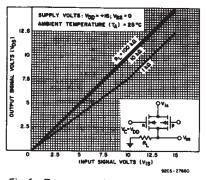


Fig. 1— Typ. on-state characteristics for 1 of 4 switches with $V_{DD} = +15 \text{ V}$, $V_{SS} = 0 \text{ V}$.

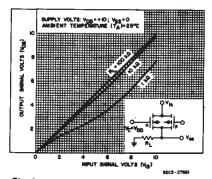


Fig. 2— Typ. on-state characteristics for 1 of 4 switches with V_{DD} = +10 V, V_{SS} = 0 V.

ELECTRICAL CHARACTERISTICS

		<u> </u>									·
CHARACTERISTIC	TI	TEST CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					UNITS	
e di esta. Ne	V _{IN} (V)			V _{DD}			ŕ			+25 Typ. Max.	
				(V)	-55	-55 -40		+85 +125			
			0,5	5	0.25	0.25	7.5	7.5	0.01	0.25	
Quiescent Device Current, IDD		•	0,10	10	0.5	0.5	15	_	0.01	0.5	μА
,	:		0,15	15	1	1	30	<u> </u>	0.01	1	
Signal Inputs (Vis	and Output	(V _{OS})	0,20	20	5	5	150	150	0.02	5	<u></u>
							-		Γ	Г	<u> </u>
On-State Resistance, r _{on}	V _C = V _{DD} R _L = 10kΩ	V _{is} =V _{DD} or	VSS	10	600	610	840	960		660	
Max.	Returned	V _{is} =4.75 to	5.75 V	10	1870	1900	2380	2600	-	2000	
₹		V _{is} =V _{DD} or		15	360	370	520	600		400	Ω
40.6	2	V _{is} =7.25 to	7.75 V	15	775	790	1080	1230		850	
∆On-State Resistance						-			15		·
Between Any	$R_L = 10 \text{ k}\Omega$, $V_C = V_{DD}$					-			10		Ω
2 Switches, ∆ron					-	_	-	- 1	5		
Total Harmonic Distortion, THD	= 5V (Sine v R _L =10 kΩ,	$V_C = V_{DD} = 5 \text{ V}, V_{SS} = -5 \text{ V}, V_{is}$ = 5 V (Sine wave centered on 0' $R_L = 10 \text{ k}\Omega, f_{is} = 1 \text{ kHz sine wave}$					_	1	0.4	-	%
-3dB Cutoff Frequency (Switch on)	$V_{is(p-p)} = 5$	5 V, VSS=-5 V (Sine wav 1 0 V) RL=	е		. -	-	1	_	40	_ :	MHz
-50dB Feed- through Frequency (Switch off)	V _C =V _{SS} = - (Sine wave of R _L = 1 lkΩ	-5V, V _{is(p-p} centered on ()=5V 0V)		-	-		_	1.25	_	MHz
Input/Output Leakage Current (Switch off) I _{is} Max.	$V_{C} = 0 V$ $V_{is} = 18 V$, $V_{is} = 0 V$, $V_{os} = 18 V$			18	±0.1	±0.1	±1	±1 .	10-4	±0.1	μΑ
-50 dB Crosstalk Frequency	V _C (B) = V _S V _{is} (A) = 5 \	$V_C(A) = V_{DD} = +5 V$, $V_C(B) = V_{SS} = -5 V$, $V_{is}(A) = 5 V_{p-p}$, 50Ω source $R_1 = 1 k\Omega$							0.9	-,	MHz
Propagation	RL = 200 ks			5	_	_	_	-	40	100	
Delay (Signal	VC = Vpp, CL = 50 pF	V _{SS} = GND,		10	_	-	_	_	20		ns
Input to Signal Output) t _{pd}	V _{is} = Square Wave 0 to V _D D t _r , t _f = 20 ns				-	_	_	-	15	30	
Capacitance: Input, C _{is}	V _{DD} = +5 V					_	_	_	4		
Output, C _{OS}	VC = VSS =				-	-	-	-	4	-	pF
Feedthrough, C _{ios}					_	-	-	-	0.2	-	

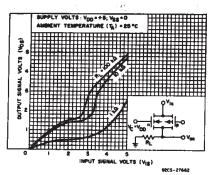


Fig. 3—Typ. on-state characteristics for 1 of 4 switches with V_{DD} = +5 V, V_{SS} = 0 V.

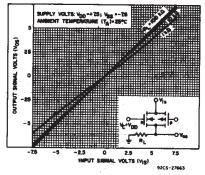


Fig. 4—Typ. on-state characteristics for 1 of 4 switches with V_{DD} = +7.5 V, V_{SS} =-7.5 V.

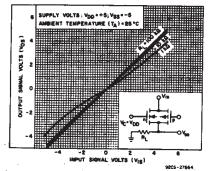


Fig. 5— Typ. on-state characteristics for 1 of 4 switches with V_{DD} =+5 V, V_{SS} *-5 V.

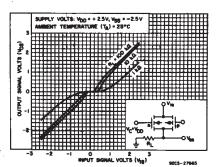


Fig. 6—Typ. on-state characteristics for 1 of 4 switches with V_{DD} = +2.5 V, V_{SS} = -2.5 V.

ELECTRICAL C	HARACTERISTICS (cont'd)								
CHARACTERISTIC	TEST CONDITIONS	LIMITS AT INDICATED TEMPERATURES (°C)						UNIT	
		V _{DD}	<u> </u>	T	l	· ·	+25		S
		(V)	-55	-40	+85	+125	Тур.	Max.	
Control (V _C)									
Control Input Low Voltage, VILC (Max.)	$ H_{is} < 10 \mu A$ $ V_{is} = V_{SS} $ $ V_{SS} = V_{DD} $ $ V_{SS} = V_{DD} $	5,10, 15	0.9	0.9	0.4	0.4	-	0.7	٧
Control Input		5	3.5 (Min.)						
High Voltage,	See Fig. 10	10	7 (Min.)						
VIHC	t in the second	15 . 11 (Min.)							
Input Current, IN (Max.)	V _{is} ≤ V _{DD} V _{DD} - V _{SS} = 18 V V _{CC} ≤ V _{DD} - V _{SS}	18	±0.1	±0.1	±1	±1	±10-5	±0.1	μΑ
Crosstalk (Con- trol Input to Signal Output)	$V_C = 10 \text{ V (Sq. Wave)}$ t_r , $t_f = 20 \text{ ns}$ $R_L = 10 \text{ k}\Omega$	10	_	_	-	_	50	_	mV
Turn-On	t _r , t _f = 20 ns	5	_	-	_	_	35	70	
Propagation	CL = 50 pF	10	_	_	_	_	20	40	ns
Delay	R _L = 1 kΩ	15	_	-	_	_	15	30	
Maximum Control Input Repetition Rate	$\begin{aligned} &V_{is} = V_{DD}, V_{SS} = GND, \\ &R_{L} = 1 \text{ k}\Omega \text{ to gnd,} \\ &C_{L} = 50 \text{ pf,} \\ &V_{C} = 10 \text{ V(Square} \\ &\text{wave centered on 5 V)} \\ &t_{r}, t_{f} = 20 \text{ ns,} \\ &V_{OS} = \frac{1}{2} V_{OS} @ 1 \text{ kHz} \end{aligned}$	10	1	_ :	-	_	10	-	MHz
Input Capacitance, C _{IN}	-		-	_	-	_	5	7.5	μF

	Switch Input								Switch Output		
VDD	Vis	V _{os} (V)									
(V)	(V)	–55°C	-40°C	25°C*	25°C▲	+85°C	+125°C	Min.	Max.		
5	0	0.25	0.2	0.2	0.16	0.12	0.14	_	0.4		
5	5	-0.25	-0.2	-0.2	-0.16	-0.12	-0.14	4.6	_		
10	0	0.62	0.5	0.5	0.4	0.3	0.35	_	0.5		
10	10	-0.62	-0.5	-0.5	-0.4	-0.3	-0.35	9.5	-		
15	0	1.8	1.4	1.5	1.2	1	1.1	_	1.5		
15	15	-1.8	-1,4	-1.5	-1.2	-1	-1.1	13.5	_		

^{*} Plastic package

Ceramic package

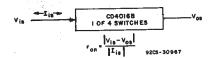


Fig. 10— Determination of r_{on} as a test condition for control input high voltage (V_{IHC}) specification.



Fig. 7.— Typ. on-state characteristics as a function of temp. for 1 of 4 switches with V_{DD} = +5 V, V_{SS} = -5 V.

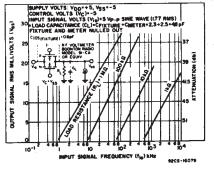


Fig. 8 - Typ. feedthru vs. frequency - switch off.

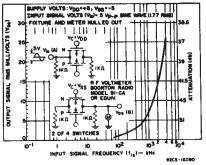


Fig. 9— Typical crosstalk between switch circuits in the same package.

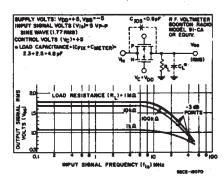
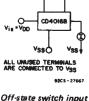



Fig. 11 — Typical frequency response — switch on.

TYPICAL ON-STATE RESISTANCE CHARACTERISTICS, TA = 25°C

CHARAC- TERISTIC*	SUP COND	PLY ITIONS						
				R _L = 1kΩ		R _L = 10kΩ		100kΩ
	V _{DD} (V)	V _{SS}	(SS)	V _{is} (V)	VALUE:	(V)	VALUE (Ω)	V _{is} (V)
_	+15	0	200	+15	200	+15	180	+15
ron		Ľ	200	0	200	0	200	0
ron (max.)	+15	0	300	+11	300	+9.3	320	+9.2
	+10	0	290	+10	250	+10	240	+10
ron	.,0		290	0	250	0	300	0
r _{on} (max.)	+10	0	500	+7.4	560	+5.6	610	+5.5
	+ 5	0	860	+ 5	470	+ 5	450	+ 5
ron			600	0	. 580	0	800	0
ron (max.)	+ 5	0	1.7k	+4.2	7k	+2.9	33k	+2.7
	+7.5		200	+7.5	200	+7.5	180	+7.5
ron			200	-7.5	200	7.5	180	-7.5
ron (max.)	+7.5	-7.5	290	±0.25	280	±25	400	±0.25
r.	+ 5	- 5	260	+ 5	250	+ 5	240	+ 5
ron		, - 3	310	- 5	250	- 5	240	– 5
ron (max.)	+ 5	- 5	600	±0.25	580	±0.25	760	±0.25
r	+2.5	5 -2.5	590	+2.5	450	+2.5	490	+2.5
ron			720	-2.5	520	-2.5	520	-2.5
ron (max.)	+2.5	-2.5	232k	±0.25	300k	±0.25	870k	±0.25

^{*} Variation from aperfect switch, $r_{on} = 0 \Omega$.

OVD0

Fig. 12 - Off-state switch input or output leakage current test circuit.

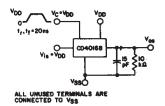
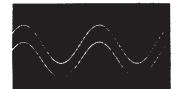



Fig. 13 — Test circuit for square-wave response.

SCALE: $X = 0.2 \text{ ms/DIV } Y = 2.0 \text{ V/DIV } VDD = VC = +7.5V, VSS = .7.5V, RL = 10K\Omega$ CL = 15 pF | 15 = 1 KHz VIS = 5V pp | DISTORTION = 0.2 %

92CS-27612

Fig. 14 – Typical sine wave response of V_{DD} = +7.5 V, V_{SS} = -7.5 V.

SCALE: X = 0.2 ms/DIV Y = 2.0 V/DIV VDD = VC = +5 V. VSS = 5 V. R_L = 10KΩ C_L = 15 pF I_S = 1 KHz. V_{IS} = 5 V p p DISTORTION = 0.4 %

9205-27613

Fig. 15 – Typical sine wave response of V_{DD} = +5 V, V_{SS} = -5 V.

SCALE: X = 0.2 ms/DIV Y = 2.0 V/DIV $V_{DD} = V_{C} = *2.5 \text{V}$, $V_{SS} = *2.5 \text{V}$, $R_{L} = 10 \text{K}\Omega$ $C_{L} = 15 \text{ pf}$ $I_{IS} = 1 \text{ KHz}$ $V_{IS} = 5 \text{V pp}$ DISTORTION = 3 %

92CS - 27614

Fig. 16 — Typical sine wave response of V_{DD} = +2.5 V, V_{SS} = -2.5 V.

SCALE: X = 100 ns/DIV Y = 5.0 V/DIV

92CS-276I5

Fig.17 - Typical square wave response at $V_{DD} = V_C = +15 V$, $V_{SS} = Gnd$.

SCALE: X = 100 ns/DIV Y = 5.0 V/DIV

9205-27616

Fig.18 — Typical square wave response at $V_{DD} = V_C = +10 \text{ V}$, $V_{SS} = \text{Gnd}$.

SCALE: X = 100 ns/DIV

9205-27617

Fig.19 – Typical square wave response at V_{DD} = V_C = +5 V, V_{SS} = Gnd.

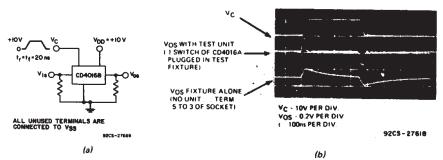


Fig. 20 - Crosstalk-control input to signal output.

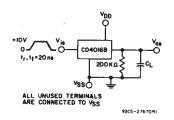


Fig. 21 — Propagation delay time signal input (V_{IS}) to signal output (V_{OS}) .

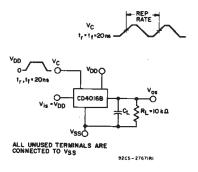


Fig. 22 - Max. control-input repetition rate.

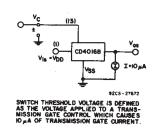


Fig.23 - Switch threshold voltage.

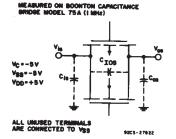
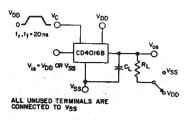



Fig.24 — Capacitance C_{IOS} and C_{OS} .

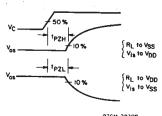
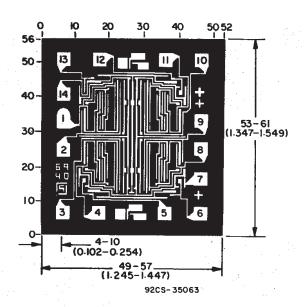



Fig.25 - Turn-On propagation delay-control input.

Dimensions and pad layout for CD4016BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated