- High Degree of Linearity
- High On-Off Output Voltage Ratio
- Low Crosstalk Between Switches
- Low On-State Impedance -

Typically, 50Ω at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$

- Individual Switch Controls
- Extremely Low Input Current
- Package Options Include Plastic Small-Outline (D), Plastic Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, and Standard Plastic (N) 300-mil DIPs

D, DB, PW, OR N PACKAGE
(TOP VIEW)

description

The SN74HC4066 is a silicon-gate CMOS quadruple analog switch designed to handle both analog and digital signals. Each switch permits signals with amplitudes of up to 6 V (peak) to be transmitted in either direction.
Each switch section has its own enable input control (C). A high-level voltage applied to C turns on the associated switch section.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.
The SN74HC4066 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each switch)

INPUT CONTROL (C)	SWITCH
L	OFF
H	ON

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
logic diagram, each switch (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

> Continuous current through V_{CC} or GND .. $\pm 50 \mathrm{~mA}$
> Package thermal impedance, θ_{JA} (see Note 2): D package .. $127^{\circ} \mathrm{C} / \mathrm{W}$
> DB package 158² C / W
> N package ... $78^{\circ} \mathrm{C} / \mathrm{W}$
> PW package $170^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to ground unless otherwise specified.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		$2 \dagger$	5	6	V
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	I/O port voltage		0		$\mathrm{V}_{\text {cc }}$	V
V_{IH}	High-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15		V_{CC}	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2		V_{CC}	
VIL	Low-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	0		0.3	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0		0.9	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	0		1.2	
t_{t}	Input rise/fall time	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400	
T_{A}	Operating free-air temperature		-40		85	${ }^{\circ} \mathrm{C}$

\dagger With supply voltages at or near 2 V , the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS		V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT		
			MIN	TYP		MAX							
$\mathrm{R}_{\text {on }}$	On-state switch resistance				$\begin{aligned} & I_{T}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=0 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}},(\text { see Figure } 1) \end{aligned}$		2 V		150				Ω
			4.5 V				50	85		106			
			6 V				30						
$\mathrm{R}_{\mathrm{on} \text { (p) }}$	Peak on resistance		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{T}}=-1 \mathrm{~mA}, \end{aligned}$		2 V		320				Ω		
			4.5 V		70	170		215					
			6 V		50								
1	Control input current				$\mathrm{V}_{\mathrm{C}}=0$ or V_{CC}		6 V		± 0.1	± 100		± 1000	nA
$I_{\text {soff }}$	Off-state switch leakage current				$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IL}}, \text { (see } \\ & \hline \end{aligned}$	$\begin{aligned} & =V_{C C} \text { or } 0, \\ & \text { re 2) } \end{aligned}$	6 V			± 0.1		± 5	$\mu \mathrm{A}$
$I_{\text {son }}$	On-state switch leakage current		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \text { (see Figure 3) } \end{aligned}$	$=\mathrm{V}_{\mathrm{IH}},$	6 V			± 0.1		± 5	$\mu \mathrm{A}$		
ICC	Supply current		$\mathrm{V}_{\mathrm{I}}=0$ or V_{CC},	$\mathrm{I}=0$	6 V			2		20	$\mu \mathrm{A}$		
C_{i}	Input capacitance	A or B			5 V	9				10	pF		
		C					3	10					
C_{f}	Feedthrough capacitance	A to B	$V_{l}=0$				0.5				pF		
C_{0}	Output capacitance	A or B			5 V		9				pF		

SCLS325B - MARCH 1996 - REVISED MAY 1997
switching characteristics over recommended operating free-air temperature range

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		MIN MAX	UNIT	
		MIN TYP				MAX				
tPLH, tpHL	Propagation delay time		A or B	B or A	$C_{L}=50 \mathrm{pF}$ (see Figure 4)	2 V	10	60	75	ns
		4.5 V				4	12	15		
		6 V				3	10	13		
tPZH, tPZL	Switch turn-on time	C	A or B	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure } 5 \text {) } \end{aligned}$	2 V	70	180	225	ns	
					4.5 V	21	36	45		
					6 V	18	31	38		
$\begin{aligned} & \text { tPLZ, } \\ & \text { tPHZ } \end{aligned}$	Switch turn-off time	C	A or B	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure 5) } \end{aligned}$	2 V	50	200	250	ns	
					4.5 V	25	40	50		
					6 V	22	34	43		
f_{1}	Control input frequency	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} / 2, \\ & \text { (see Figure } 6 \text {) } \end{aligned}$	2 V	15			MHz	
					4.5 V	30				
					6 V	30				
Control feedthrough noise		C	A or B	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\text {in }}=R_{\mathrm{L}}=600 \Omega, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}} \mathrm{C} \text { or } \mathrm{GND}, \\ & \mathrm{f}_{\text {in }}=1 \mathrm{MHz}, \\ & \text { (see Figure } 7 \text {) } \end{aligned}$	4.5 V	15			$\begin{gathered} \mathrm{mV} \\ (\mathrm{rms}) \end{gathered}$	
		6 V			20					

operating characteristics, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		TYP	UNIT
$\mathrm{C}_{\text {pd }}$ Power dissipation capacitance per gate	$\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{f}=1 \mathrm{MHz}$	45	pF
Minimum through bandwidth, A to B or B to $\mathrm{A}^{\dagger}\left[20 \log \left(\mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}\right)\right]=-3 \mathrm{~dB}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=600 \Omega, \\ & \text { (see Figure } 8 \text {) } \end{aligned}$	30	MHz
Crosstalk between any switches \ddagger	$\begin{aligned} & C_{L}=10 \mathrm{pF} \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz}, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega,$ (see Figure 9)	45	dB
Feedthrough, switch off, A to B or B to $\mathrm{A} \ddagger$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz}, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=600 \Omega \text {, }$ (see Figure 10)	42	dB
Amplitude distortion rate, A to B or B to A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz}, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,$ (see Figure 11)	0.05\%	

\dagger Adjust the input amplitude for output $=0 \mathrm{dBm}$ at $\mathrm{f}=10 \mathrm{kHz}$. Input signal must be a sine wave.
\ddagger Adjust the input amplitude for output $=0 \mathrm{dBm}$ at $\mathrm{f}=1 \mathrm{MHz}$. Input signal must be a sine wave.

PARAMETER MEASUREMENT INFORMATION

Figure 1. On-State Resistance Test Circuit

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}} \\
& \text { CONDITION 1: } \mathrm{V}_{\mathrm{A}}=0, \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}} \\
& \text { CONDITION 2: } \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{C}}, \mathrm{~V}_{\mathrm{B}}=0
\end{aligned}
$$

Figure 2. Off-State Switch Leakage Current Test Circuit

PARAMETER MEASUREMENT INFORMATION

$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{CC}}$ TO GND
Figure 3. On-State Leakage Current Test Circuit

Figure 4. Propagation Delay Time, Signal Input to Signal Output

PARAMETER MEASUREMENT INFORMATION

Figure 5. Switching Time ($\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\text {PHZ }}$), Control to Signal Output

Figure 6. Control Input Frequency

Figure 7. Control Feedthrough Noise

Figure 8. Minimum Through Bandwidth

PARAMETER MEASUREMENT INFORMATION

$\left(\mathrm{V}_{\mathrm{I}}=0 \mathrm{dBm}\right.$ at $\left.\mathrm{f}=1 \mathrm{MHz}\right)$

Figure 9. Crosstalk Between Any Two Switches

Figure 10. Feedthrough, Switch Off

Figure 11. Amplitude Distortion Rate

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

