- Low $r_{DS(on)} \dots 5 \Omega$ - Avalanche Energy . . . 30 mJ - **Eight Power DMOS-Transistor Outputs of** 150-mA Continuous Current - 500-mA Typical Current-Limiting Capability - Output Clamp Voltage . . . 50 V - **Enhanced Cascading for Multiple Stages** - All Registers Cleared With Single Input - **Low Power Consumption** #### description The TPIC6B596 is a monolithic, high-voltage, medium-current power 8-bit shift register designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other mediumcurrent or high-voltage loads. This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shift-register clock (SRCK) and the register clock (RCK), respectively. The storage register transfers data to the output buffer when shiftregister clear (SRCLR) is high. When SRCLR is low, all registers in the device are cleared. When output enable (G) is held high, all data in the output buffers is held low and all drain outputs are off. When G is held low, data from the storage register is transparent to the output buffers. When data in the output buffers is low, the DMOStransistor outputs are off. When data is high, the NC - No internal connection #### logic symbol† † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. DMOS-transistor outputs have sink-current capability. The serial output (SER OUT) is clocked out of the device on the falling edge of SRCK to provide additional hold time for cascaded applications. This will provide improved performance for applications where clock signals may be skewed, devices are not located near one another, or the system must tolerate electromagnetic interference. Outputs are low-side, open-drain DMOS transistors with output ratings of 50 V and 150-mA continuous sinkcurrent capability. Each output provides a 500-mA typical current limit at $T_C = 25$ °C. The current limit decreases as the junction temperature increases for additional device protection. The TPIC6B596 is characterized for operation over the operating case temperature range of −40°C to 125°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. #### TPIC6B596 POWER LOGIC 8-BIT SHIFT REGISTER SLIS095 - MARCH 2000 #### logic diagram (positive logic) #### schematic of inputs and outputs ### absolute maximum ratings over recommended operating case temperature range (unless otherwise noted) $\!\!\!\!\!\!\!^{\dagger}$ | Logic supply voltage, V_{CC} (see Note 1) | 0.3 V to 7 V | |--|------------------------------| | Power DMOS drain-to-source voltage, V _{DS} (see Note 2) | | | Continuous source-to-drain diode anode current | 500 mA | | Pulsed source-to-drain diode anode current (see Note 3) | | | Pulsed drain current, each output, all outputs on, I _D , T _C = 25°C (see Note 3) | 500 mA | | Continuous drain current, each output, all outputs on, I_D , $T_C = 25^{\circ}C$ | 150 mA | | Peak drain current single output, I _{DM} ,T _C = 25°C (see Note 3) | 500 mA | | Single-pulse avalanche energy, E _{AS} (see Figure 4) | | | Avalanche current, I _{AS} (see Note 4) | 500 mA | | Continuous total dissipation | See Dissipation Rating Table | | Operating virtual junction temperature range, T _J | –40°C to 150°C | | Operating case temperature range, T _C | | | Storage temperature range | –65°C to 150°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values are with respect to GND. - 2. Each power DMOS source is internally connected to GND. - 3. Pulse duration \leq 100 μ s and duty cycle \leq 2%. - 4. DRAIN supply voltage = 15 V, starting junction temperature (T_{JS}) = 25°C, L = 200 mH, I_{AS} = 0.5 A (see Figure 4). #### **DISSIPATION RATING TABLE** | PACKAGE | $T_C \le 25^{\circ}C$ POWER RATING | DERATING FACTOR
ABOVE T _C = 25°C | T _C = 125°C
POWER RATING | | | |---------|------------------------------------|--|--|--|--| | DW | 1389 mW | 11.1 mW/°C | 278 mW | | | | N | 1050 mW | 10.5 mW/°C | 263 mW | | | #### TPIC6B596 POWER LOGIC 8-BIT SHIFT REGISTER SLIS095 - MARCH 2000 #### recommended operating conditions | | M | IN | MAX | UNIT | |---|------|-----|----------------------|------| | Logic supply voltage, VCC | 4 | 1.5 | 5.5 | V | | High-level input voltage, VIH | 0.85 | Vcc | | V | | Low-level input voltage, V _{IL} | | | 0.15 V _{CC} | V | | Pulsed drain output current, T _C = 25°C, V _{CC} = 5 V (see Notes 3 and 5) | -5 | 00 | 500 | mA | | Setup time, SER IN high before SRCK↑, t _{SU} (see Figure 2) | | 15 | | ns | | Hold time, SER IN high after SRCK↑, th (see Figure 2) | | 15 | | ns | | Pulse duration, t _W (see Figure 2) | | 40 | | ns | | Operating case temperature, T _C | - | 40 | 125 | °C | NOTES: 3. Pulse duration \leq 100 μ s and duty cycle \leq 2%. 5. Technique should limit $T_J - T_C$ to 10°C maximum. ### electrical characteristics, V_{CC} = 5 V, T_{C} = 25°C (unless otherwise noted) | | PARAMETER | TES | T CONDIT | TIONS | MIN | TYP | MAX | UNIT | |----------------------|---|---|------------|---------------------------------------|------|-------|-----|------| | V(BR)DSX | Drain-to-source breakdown voltage | I _D = 1 mA | | | 50 | | | V | | V _{SD} | Source-to-drain diode forward voltage | I _F = 100 mA | | | | 0.85 | 1 | ٧ | | Vou | High-level output voltage, | $I_{OH} = -20 \mu\text{A}, \ V_{CC} = 4.5 \text{V}$ | | 4.4 | 4.49 | | V | | | VOH | SER OUT | $I_{OH} = -4 \text{ mA}, V_{CC}$ | = 4.5 V | | 4 | 4.2 | | V | | Vai | Low-level output voltage, | $I_{OL} = 20 \mu\text{A}, V_{CC}$ | = 4.5 V | | | 0.005 | 0.1 | V | | VOL | SER OUT | I _{OL} = 4 mA, V _{CC} | ; = 4.5 V | | | 0.3 | 0.5 | V | | lн | High-level input current | $V_{CC} = 5.5 \text{ V}, V_{I} = 100 \text{ V}$ | Vcc | | | | 1 | μΑ | | I _I L | Low-level input current | $V_{CC} = 5.5 \text{ V}, V_{I} = 0.00 \text{ V}$ | 0 | | | | -1 | μΑ | | 1 | Laria surale surant | V 55V | | All outputs off | | 20 | 100 | | | lcc | Logic supply current | V _{CC} = 5.5 V | Ī | All outputs on | | 150 | 300 | μΑ | | I _{CC(FRQ)} | Logic supply current at frequency | fSRCK = 5 MHz, C _L
All outputs off, See | | and 6 | | 0.4 | 5 | mA | | I _N | Nominal current | $V_{DS(on)} = 0.5 \text{ V},$
$I_{N} = I_{D}, T_{C} =$ | = 85°C | See Notes 5, 6, and 7 | | 90 | | mA | | Inov | Off-state drain current | $V_{DS} = 40 \text{ V}, V_{CC}$ | ; = 5.5 V | | | 0.1 | 5 | | | DSX | On-state drain current | $V_{DS} = 40 \text{ V}, V_{CC}$ | ; = 5.5 V, | T _C = 125°C | | 0.15 | 8 | μΑ | | | | $I_D = 100 \text{ mA}, V_{CC}$ | ; = 4.5 V | | | 4.2 | 5.7 | | | rDS(on) | Static drain-source on-state resistance | $I_D = 100 \text{ mA}, T_C = V_{CC} = 4.5 \text{ V}$ | = 125°C, | See Notes 5 and 6 and Figures 7 and 8 | | 6.8 | 9.5 | Ω | | | | $I_D = 350 \text{ mA}, V_{CC}$ | ; = 4.5 V | | | 5.5 | 8 | | NOTES: 5. Technique should limit T_J – T_C to 10°C maximum. 6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. 7. Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at T_C = 85°C. SLIS095 - MARCH 2000 #### switching characteristics, $V_{CC} = 5 \text{ V}$, $T_{C} = 25^{\circ}\text{C}$ | PARAMETER | | TEST CONDITIONS | MIN TYP | MAX | UNIT | |-----------------|--|---|---------|-----|------| | tPLH | Propagation delay time, low-to-high-level output from G | | 150 | | ns | | tPHL | Propagation delay time, high-to-low-level output from \overline{G} | $C_L = 30 \text{ pF}, \qquad I_D = 100 \text{ mA},$ | 90 | | ns | | t _r | Rise time, drain output | See Figures 1, 2, and 9 | 200 | | ns | | t _f | Fall time, drain output | | 200 | | ns | | ^t pd | Propagation delay time, SRCK↓ to SEROUT | $C_L = 30 \text{ pF}, \qquad I_D = 100 \text{ mA},$
See Figure 2 | 15 | | ns | | f(SRCK) | Serial clock frequency | C _L = 30 pF, I _D = 100 mA,
See Note 8 | | 10 | MHz | | ta | Reverse-recovery-current rise time | I _F = 100 mA, di/dt = 20 A/μs, | 100 | | | | t _{rr} | Reverse-recovery time | See Notes 5 and 6 and Figure 3 | 300 | | ns | - NOTES: 5. Technique should limit $T_J T_C$ to 10°C maximum. - 6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. - 8. This is the maximum serial clock frequency assuming cascaded operation where serial data is passed from one stage to a second stage. The clock period allows for SRCK → SEROUT propagation delay and setup time plus some timing margin. #### thermal resistance | PARAMETER | | TEST CONDITIONS | MIN | MAX | UNIT | |--|------------|--------------------------------|-----|-----|------| | R _{θJA} Thermal resistance, junction-to-ambient | DW package | All 8 outputs with equal power | | 90 | °C/W | | | N package | All 6 outputs with equal power | | 95 | C/VV | NOTES: A. The word generator has the following characteristics: $t_{\Gamma} \le 10$ ns, $t_{W} = 300$ ns, pulsed repetition rate (PRR) = 5 kHz, $Z_{O} = 50 \ \Omega$. B. C_L includes probe and jig capacitance. Figure 1. Resistive-Load Test Circuit and Voltage Waveforms #### PARAMETER MEASUREMENT INFORMATION NOTES: A. The word generator has the following characteristics: $t_{\Gamma} \le 10$ ns, $t_{W} = 300$ ns, pulsed repetition rate (PRR) = 5 kHz, $Z_{O} = 50 \ \Omega$. B. C_L includes probe and jig capacitance. Figure 2. Test Circuit, Switching Times, and Voltage Waveforms #### PARAMETER MEASUREMENT INFORMATION - NOTES: A. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point. - B. The V_{GG} amplitude and R_{G} are adjusted for di/dt = 20 A/ μ s. A V_{GG} double-pulse train is used to set I_{F} = 0.1 A, where t_{1} = 10 μ s, t_{2} = 7 μ s, and t_{3} = 3 μ s. Figure 3. Reverse-Recovery-Current Test Circuit and Waveforms of Source-to-Drain Diode #### SINGLE-PULSE AVALANCHE ENERGY TEST CIRCUIT **VOLTAGE AND CURRENT WAVEFORMS** - NOTES: A. The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $Z_Q = 50 \Omega$. - B. Input pulse duration, t_W , is increased until peak current $I_{AS} = 0.5$ A. Energy test level is defined as $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{av}/2 = 30$ mJ. Figure 4. Single-Pulse Avalanche Energy Test Circuit and Waveforms #### TYPICAL CHARACTERISTICS # DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT #### STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE SLIS095 - MARCH 2000 #### **TYPICAL CHARACTERISTICS** ## SWITCHING TIME vs CASE TEMPERATURE Figure 9 NOTE A: Technique should limit T_J-T_C to 10°C maximum. #### THERMAL INFORMATION #### **MAXIMUM CONTINUOUS** DRAIN CURRENT OF EACH OUTPUT NUMBER OF OUTPUTS CONDUCTING **SIMULTANEOUSLY** 0.45 $V_{CC} = 5 V$ ID - Maximum Continuous Drain Current 0.4 0.35 0.3 of Each Output - A 0.25 T_C = 25°C 0.2 0.15 T_C = 100°C 0.1 T_C = 125°C 0.05 0 2 7 5 8 N - Number of Outputs Conducting Simultaneously Figure 10 #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 2000, Texas Instruments Incorporated