- Fast Throughput Rate: 1.25 MSPS at 5 V , 625 KSPS at 3 V
- Wide Analog Channel Input: 0 V to $\mathrm{AV}_{\mathrm{DD}}$
- Eight Analog Input Channels
- Channel Auto-Scan
- Differential Nonlinearity Error: < ± 1 LSB
- Integral Nonlinearity Error: < ± 1 LSB
- Signal-to-Noise and Distortion Ratio: 57 dB
- Single 2.7-V to 5.5-V Supply Operation
- Very Low Power: 40 mW at 5.5 V , 8 mW at 2.7 V
- Auto-Power Down: $300 \mu \mathrm{~A}$ Max
- Software Power Down: $10 \mu \mathrm{~A}$ Max
- Glueless Serial Interface to TMS320 DSPs and (Q)SPI Compatible Microcontrollers
- Programmable Internal Reference Voltage: 3.8-V Reference for 5-V Operation, 2.3-V Reference for 3-V Operation

description

The TLV1570 is a 10-bit data acquisition system that combines an 8-channel input multiplexer (MUX), a high-speed 10-bit ADC, an on-chip reference, and a high-speed serial interface. The device contains an on-chip control register allowing control of channel selection, conversion start, reference voltage levels, and power down via the serial port. The MUX is independently accessible, which allows the user to insert a signal conditioning circuit such as an anti-aliasing filter or an amplifier, if required, between the MUX and the ADC. Therefore one signal conditioning circuit can be used for all eight channels.

The TLV1570 operates from a single 2.7-V to 5.5-V power supply. The device accepts an analog input range from 0 V to $\mathrm{AV}_{\mathrm{DD}}$ and digitizes the input at a maximum 1.25 MSPS throughput rate. Power dissipation is only 8 mW with a $2.7-\mathrm{V}$ supply or 40 mW with a $5.5-\mathrm{V}$ supply. The device features an auto-power down mode that automatically powers down to $300 \mu \mathrm{~A}, 10 \mathrm{~ns}$ after a conversion is performed. With software power down enabled, the device is further powered down to only $10 \mu \mathrm{~A}$.

The TLV1570 communicates with digital microprocessors via a simple 4- or 5 -wire serial port that interfaces directly to Texas Instruments TMS320 DSPs, and SPITM and QSPITM ${ }^{T M}$ compatible microcontrollers without using additional glue logic.

A very high throughput rate, a simple serial interface, and low power consumption make the TLV1570 an ideal choice for high-speed digital signal processing requiring multiple analog inputs.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGED DEVICES	
	SMALL OUTLINE (DW)	SMALL OUTLINE (PW)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	TLV1570CDW	TLV1570CPW
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TLV1570IDW	TLV1570IPW

[^0] Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI and QSPI are trademarks of Motorola, Inc.

TLV1570
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS

SERIAL ANALOG-TO-DIGITAL CONVERTER
SLAS169A - DECEMBER 1997- REVISED SEPTEMBER 1998
functional block diagram

Terminal Functions

TERMINAL		10	DESCRIPTION
NAME	NO.	1/0	
AGND	14		Analog ground
AIN	20	1	ADC analog input
$A V_{\text {DD }}$	15		Analog supply voltage, 2.7 V to 5.5 V
$\mathrm{CH0}-\mathrm{CH} 7$	$\begin{gathered} 5,4,3,2,1 \\ 18,17,16 \end{gathered}$	I	Analog input channels 0-7
$\overline{\mathrm{CS}}$	12	1	Chip Select. A low level signal on $\overline{\mathrm{CS}}$ enables the TLV1570. A high level signal on $\overline{\mathrm{CS}}$ disables the device and disconnects power to the TLV1570.
DGND	7		Digital ground
DV ${ }_{\text {DD }}$	6		Digital supply voltage, 2.7 V to 5.5 V
FS	8	1	Frame sync. The falling edge of the frame sync pulse from a DSP indicates the start of a serial data frame shifted out of the TLV1570. FS is pulled high when interfaced to a microcontroller.
MO	19	O	On-chip MUX analog output
REF	13	I	Reference voltage input. The voltage applied to REF defines the input span of the TLV1570. In external reference mode, a $0.1 \mu \mathrm{~F}$ decoupling capacitor must be placed between the reference and AGND. This is not required for internal reference mode.
SCLK	9	1	Serial clock input. SCLK synchronizes the serial data transfer and is also used for internal data conversion.
SDIN	10	1	Serial data input used to configure the internal control register.
SDOUT	11	0	Serial data output. A/D conversion results are output at SDOUT.

detailed description

analog-to-digital converter

The TLV1570 ADC uses the SAR architecture described in this section. The CMOS threshold detector in the successive-approximation conversion system determines the value of each bit by examining the charge on a series of binary-weighted capacitors (see Figure 1). In the first phase of the conversion process, the analog input is sampled by closing the S_{C} switch and all $\mathrm{S}_{\boldsymbol{T}}$ switches simultaneously. This action charges all of the capacitors to the input voltage.

Figure 1. Simplified Model of the Successive-Approximation System
In the next phase of the conversion process, all S_{T} and S_{C} switches are opened and the threshold detector begins identifying bits by identifying the charge (voltage) on each capacitor relative to the reference (REF-) voltage (REF- is tied to AGND). In the switching sequence, ten capacitors are examined separately until all ten bits are identified and then the charge-convert sequence is repeated. In the first step of the conversion phase, the threshold detector looks at the first capacitor (weight = 512). Node 512 of this capacitor is switched to the REF+ voltage, and the equivalent nodes of all the other capacitors on the ladder are switched to REF-. If the voltage at the summing node is greater than the trip point of the threshold detector (approximately one-half V_{CC}), a bit 0 is placed in the output register and the 512 -weight capacitor is switched to REF-. If the voltage at the summing node is less than the trip point of the threshold detector, a bit 1 is placed in the register and the 512-weight capacitor remains connected to REF+ through the remainder of the successive-approximation process. The process is repeated for the 256 -weight capacitor, the 128 -weight capacitor, and so forth down the line until all bits are counted.
With each step of the successive-approximation process, the initial charge is redistributed among the capacitors. The conversion process relies on charge redistribution to count and weigh the bits from MSB to LSB.
In the case of the TLV1570, REF- is tied to ground and REF+ is connected to the REF input.
The TLV1570 can be programmed to use the on-chip internal reference (D16=1). The user can select between two values of internal reference, 2.3 V or 3.8 V , using the control bit DI5.

During internal reference mode, the reference voltage is not output on the REF pin. Therefore it cannot be decoupled to analog ground (AGND), which acts as the negative reference for the ADC, using an external capacitor. Hence this mode requires the ground noise to be very low. The REF pin can be left open in this mode.

TLV1570

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS

SERIAL ANALOG-TO-DIGITAL CONVERTER
SLAS169A - DECEMBER 1997- REVISED SEPTEMBER 1998

sampling frequency, $\mathrm{f}_{\mathbf{s}}$

The TLV1570 requires 16 SCLKs for each sampling and conversion, therefore the equivalent maximum sampling frequency achievable with a given SCLK frequency is:

$$
f_{s(M A X)}=(1 / 16) f_{S C L K}
$$

power down

The TLV1570 offers two different power-down options. With auto power-down mode enabled, (DI4=0) the ADC proceeds to power down if FS is not detected on the 17th falling SCLK edge of a cycle (a cycle starts with FS being detected on a falling edge of SCLK) in DSP mode and after 16 SCLKs in $\mu \mathrm{C}$ mode. The TLV1570 will recover from auto power down when FS goes high in DSP mode or when the next SCLK comes in $\mu \mathrm{C}$ mode. In the case of software power down, the ADC goes to the software power-down state one cycle after CR.DI15 is set to 1 . Unlike auto power down which recovers in 1 SCLK, software power down takes 16 SCLKs to recover.

DESCRIPTION		AUTO POWER DOWN	SOFTWARE POWERDOWN $\overline{C S}=D V_{D D}$
Maximum power down dissipation current		$300 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
Comparator		Power down	Powerdown
Clock buffer \dagger		Power down	Powerdown
Reference		Active	Powerdown
Register		Not saved	Not saved
Minimum power down time		1 SCLK	$1 \mu \mathrm{~s}$
Minimum resume time		1 SCLK	800 ns
Power down	DSP mode	No FS present one SCLK after previous conversion completed	CR.DI15 set to 1
	Microprocessor mode (FS = 1)	SCLK stopped after previous conversion completed	CR.DI15 set to 1
Power up	DSP mode	FS present	CR.DI15 set to 1
	Microprocessor mode (FS = 1)	SCLK present	CR.DI15 set to 1

\dagger Only in DSP mode is input buffer of clock in power-down mode.
\ddagger The software power down enable/disable bit is not acted until the start of the next cycle (see section configuring the TLV1570 for more information.

configuring the TLV1570

The TLV1570 is to be configured by writing the control bits to SDIN. The configuration will not take affect until the next cycle. A new configuration is needed for each conversion. Once the channel input and other options are selected, the conversion takes place in the next cycle. Conversion results are shifted out as conversion progresses (see Figure 2).

Figure 2. TLV1570 Configuration Cycle Timing
configuration register (CR) definition

TLV1570

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS

SERIAL ANALOG-TO-DIGITAL CONVERTER
SLAS169A - DECEMBER 1997- REVISED SEPTEMBER 1998

initialization-software sequence

This sequence shows the default settings, unless otherwise specified. The ADC requires that the user write to it every cycle. There is a cycle delay before control bits are implemented.

Example 1. Normal Sample Mode With Internal Reference

CYCLE	WRITE TO SDIN	CHANNEL SAMPLED	OUPUT FROM SDOUT	COMMENT
1st	0040 h	N/A	Invalid	No analog input channel sampled
2nd	01 C0h	N/A	Invalid	No analog input channel sampled
3rd	0040 h	3	From Channel 3	
4th	8040 h	0	From Channel 0	Software power down enabled
5th	0040 h	N/A	Invalid	Software power down mode, no analog input channel sampled
Wait 800 ns	Recovery time, no analog input channel sampled (16 SCLKs if AVDD = 5 V and fCLK = 20 MHz)			
6th	0140 h	N/A	Invalid	Recovery time, no analog input channel sampled
7th	0040 h	2	From Channel 2	

Example 2. Auto Scan Mode

CYCLE	WRITE TO SDIN	CHANNEL SAMPLED	OUTPUT FROM SDOUT	COMMENT
1st	0480 h	N/A	Invalid	Auto-scan reset enabled, no analog input channel sampled
2nd	0480 h	N/A	Invalid	No analog input channel sampled
3rd	0400 h	0	From Channel 0	
4th	0400 h	1	From Channel 1	
5th	0400h	2	From Channel 2	
6th	0400 h	3	From Channel 3	
7th	0400 h	4	From Channel 4	
8th	0400 h	5	From Channel 5	
9th	0400 h	6	From Channel 6	
10th	0400 h	7	From Channel 7	
11th	0400h	0	From Channel 0	

NOTE: If software power down is enabled during auto-scan mode, the next channel in the sequence is skipped.

initialization-software sequence (continued)

Example 3. Auto-Scan Mode

This example shows a change in sequence in the middle of the current sequence. The following shows that after the initial auto-scan reset, a reset is not necessary again when switching channel sequences.

CYCLE	WRITE TO SDIN	CHANNEL SAMPLED	OUTPUT FROM SDOUT	COMMENT
1st	0480 h	$\mathrm{~N} / \mathrm{A}$	N / A	No analog input channel sampled
2nd	0480 h	$\mathrm{~N} / \mathrm{A}$	N / A	Auto-scan reset enabled, no analog input channel sampled
3rd	0400 h	0	From Channel 0	Start of sequence 0
4th	0700 h	1	From Channel 1	Enable channel sequence 3 (no auto-scan reset required)
5th	0700 h	7	From Channel 7	Start of sequence 3
6th	0700 h	6	From Channel 6	
7th	0700 h	5	From Channel 5	
8th	0700 h	4	From Channel 4	
9th	0700 h	3	From Channel 3	
10th	0700 h	2	From Channel 2	
11th	0700 h	1	From Channel 1	
12th	0700 h	0	From Channel 0	

Example 4. Auto-Scan Mode
This example shows a switch in sequence in the course of a sequence. The following shows that a particular sequence does not have to be continued if remaining channels do not need to be sampled (i.e., only channel 1 through channel 5 sampled, not channels 6, 7, 8)

CYCLE	WRITE TO SDIN	CHANNEL SAMPLED	OUPUT FROM SDOUT	COMMENT
1st	0480 h	$\mathrm{~N} / \mathrm{A}$	N / A	No analog input channel sampled
2nd	0480 h	$\mathrm{~N} / \mathrm{A}$	N / A	Auto-scan reset enabled, no analog input channel sampled
3rd	0400 h	0	From Channel 0	
4th	0400 h	1	From Channel 1	
5th	0400 h	2	From Channel 2	
6th	0400 h	3	From Channel 3	
7th	0400 h	4	From Channel 4	
8th	0480 h	5	From Channel 5	Auto-scan reset enabled
9th	0400 h	0	From Channel 0	Sequence is reset to channel 0
10th	0400 h	1	From Channel 1	
11th	0400 h	2	From Channel 2	

The TLV1570 is a 800-ns 10-bit 8-analog input channel analog-to-digital converter with a throughput of up to 1.25 MSPS at 5 V and up to 625 KSPS at 3 V respectively. To run at its fastest conversion rate, it must be clocked at 20 MHz at $5-\mathrm{V}$ or 10 MHz at $3-\mathrm{V}$. The TLV1570 can be easily interfaced to microcontrollers, ASICs, DSPs, or shift registers. The TLV1570 serial interface is designed to be fully compatible with Serial Peripheral Interface (SPI) and TMS320 DSP serial ports. No additional hardware is required to interface between the TLV1570 and a microcontroller ($\mu \mathrm{Cs}$) with a SPI serial port or a TMS320 DSP. However, the speed is limited by the SCLK rate of the $\mu \mathrm{C}$ or the DSP.

TLV1570

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS

SERIAL ANALOG-TO-DIGITAL CONVERTER
SLAS169A - DECEMBER 1997- REVISED SEPTEMBER 1998

initialization-software sequence (continued)

The TLV1570 interfaces to a DSP over five lines: CS, SCLK, SDOUT, SDIN, and FS, and interfaces to a $\mu \mathrm{C}$ over four lines: $\overline{\mathrm{CS}}$, SCLK, SDOUT, and SDIN. The FS input should be pulled high in $\mu \mathrm{C}$ mode. The device is in 3 -state and power-down mode when $\overline{\mathrm{CS}}$ is high. After $\overline{\mathrm{CS}}$ falls, the TLV1570 checks the FS input at the $\overline{\mathrm{CS}}$ falling edge to determine the operation mode. If FS is low, DSP mode is set, otherwise $\mu \mathrm{C}$ mode is set.

Figure 3. DSP to TLV1570 Interface

Figure 4. $\mu \mathrm{C}$ to TLV1570 Interface

grounding and decoupling considerations

General practices should apply to the PCB design to limit high frequency transients and noise that are fed back into the supply and reference lines (see Figure 5). This requires that the supply and reference pins be sufficiently bypassed. In most cases $0.1 \mu \mathrm{~F}$ ceramic chip capacitors are adequate to keep the impedance low over a wide frequency range. Since their effectiveness depends largely on the proximity to the individual supply pin. They should be placed as close to the supply pins as possible.

To reduce high frequency and noise coupling, it is highly recommended that digital and analog ground be shorted immediately outside the package. This can be accomplished by running a low impedance line between DGND and AGND, under the package.

Figure 5. Placement of Decoupling Capacitors

power supply ground layout

Printed circuit boards that use separate analog and digital ground planes offer the best system performance. Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected together at the low-impedance power-supply source. The best ground connection may be achieved by connecting the ADC AGND terminal to the system analog ground plane making sure that analog ground currents are well managed.

simplified analog input analysis

Using the equivalent circuit in Figure 6, the time required to charge the analog input capacitance from 0 to V_{S} within $1 / 2 \mathrm{LSB}, \mathrm{t}_{\mathrm{ch}}(1 / 2 \mathrm{LSB})$, can be derived as follows:

The capacitance charging voltage is given by:

$$
\mathrm{V}_{\mathrm{C}(\mathrm{t})}=\mathrm{V}_{\mathrm{S}}\left(1-\mathrm{e}^{\left.-\mathrm{t}_{\mathrm{ch}} / R_{\mathrm{t}} \mathrm{C}_{\mathrm{i}}\right)}\right.
$$

where

$$
\begin{align*}
& R_{t}=R_{s}+R_{i} \tag{1}\\
& R_{i}=R_{i(A D C)}+R_{i(M U X)} \\
& t_{c h}=\text { Charge time }
\end{align*}
$$

The input impedance R_{i} is 718Ω at 5 V , and is higher ($\sim 1.25 \mathrm{k} \Omega$) at 2.7 V . The final voltage to $1 / 2 \mathrm{LSB}$ is given by:

$$
\begin{equation*}
V_{C}(1 / 2 L S B)=V_{S}-\left(V_{S} / 2048\right) \tag{2}
\end{equation*}
$$

Equating equation 1 to equation 2 and solving for cycle time t_{c} gives:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{S}}-\left(\mathrm{V}_{\mathrm{S}} / 2048\right)=\mathrm{V}_{\mathrm{S}}\left(1-\mathrm{e}^{-\mathrm{t}} \mathrm{ch} / \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{i}}\right) \tag{3}
\end{equation*}
$$

and time to change to $1 / 2$ LSB (minimum sampling time) is:

$$
t_{c h}(1 / 2 L S B)=R_{t} \times C_{i} \times \ln (2048)
$$

where

$$
\ln (2048)=7.625
$$

Therefore, with the values given, the time for the analog input signal to settle is:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ch}}(1 / 2 \mathrm{LSB})=\left(\mathrm{R}_{\mathrm{s}}+718 \Omega\right) \times 15 \mathrm{pF} \times \ln (2048) \tag{4}
\end{equation*}
$$

This time must be less than the converter sample time shown in the timing diagrams. Which is $6 \times$ SCLK.

$$
\begin{equation*}
t_{\mathrm{ch}}(1 / 2 \mathrm{LSB}) \leq 6 \times 1 / \mathrm{f}(\mathrm{SCLK}) \tag{5}
\end{equation*}
$$

Therefore the maximum SCLK frequency is:

$$
\begin{equation*}
\operatorname{Max}(\mathrm{f}(\mathrm{SCLK}))=6 / \mathrm{t}_{\mathrm{ch}}(1 / 2 \mathrm{LSB})=6 /\left(\ln (2048) \times R_{\mathrm{t}} \times \mathrm{C}_{\mathrm{i}}\right) \tag{6}
\end{equation*}
$$

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS
 SERIAL ANALOG-TO-DIGITAL CONVERTER
 SLAS169A - DECEMBER 1997- REVISED SEPTEMBER 1998

simplified analog input analysis (continued)

\dagger Driving source requirements:

- Noise and distortion for the source must be equivalent to the resolution of the converter.
- R_{S} must be real at the input frequency.

Figure 6. Equivalent Input Circuit Including the Driving Source

definitions of specifications and terminology

integral nonlinearity (INL)

Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale. The point used as zero occurs $1 / 2$ LSB before the first code transition. The full scale point is defined as level $1 / 2$ LSB beyond the last code transition. The deviation is measured from the center of each particular code to the true straight line between these two points.

differential nonlinearity (DNL)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A differential nonlinearity error of less than ± 1 LSB ensures no missing codes.

zero offset

The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the deviation of the actual transition from that point

gain error

The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition should occur at an analog value $11 / 2$ LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

signal-to-noise ratio + distortion (SINAD)

SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels.

effective number of bits (ENOB)

For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,

$$
N=(S I N A D-1.76) / 6.02
$$

It is possible to get a measure of performance expressed as N , the effective number of bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.

definitions of specifications and terminology (continued)

total harmonic distortion (THD)

Total harmonic distortion is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels.

spurious free dynamic range (SFDR)

Spurious free dynamic range is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

	V to 6.5 V
Analog input voltage range	-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference input voltage	$\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital input voltage range	-0.3 V to $\mathrm{DV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating virtual junction temperature range, T_{J}	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating free-air temperature range, T_{A} : TLV1570C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TLV1570I	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 10	$260^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

power supplies

	MIN	TYP	MAX
UnIT			
Analog supply voltage, $\mathrm{AV}_{\mathrm{DD}}$ (see Note 1)	2.7	5.5	V
Digital supply voltage, DV DD (see Note 1)	2.7	5.5	V

NOTE 1: Abs (AV $\left.\mathrm{DD}_{\mathrm{DD}}-\mathrm{DV}_{\mathrm{DD}}\right)<0.5 \mathrm{~V}$
analog inputs

		MIN	TYP	MAX	UNIT
Analog input voltage, AIN		AGND		VREF	V
Reference input voltage REF	$\mathrm{DV}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to 2.7 V	55% AV ${ }_{\text {DD }}$		$\mathrm{AV}_{\mathrm{DD}}$	V
	$\mathrm{DV}_{\mathrm{DD}}=5.5 \mathrm{~V}$ to 4.5 V	60% AVDD		$\mathrm{AV}_{\mathrm{DD}}$	

digital inputs

		MIN	TYP MAX	UNIT
High-level input voltage, V_{IH}	DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V	2.1		V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V		0.8	V
Input SCLK frequency	DV ${ }_{\text {DD }}=5.5 \mathrm{~V}$ to 4.5 V		20	MHz
	DV ${ }_{\text {DD }}=3.6 \mathrm{~V}$ to 2.7 V	1	10	
SCLK pulse duration, clock high, $\mathrm{t}_{\mathrm{w}}(\mathrm{SCLKH})$	$\mathrm{DV}_{\mathrm{DD}}=5.5 \mathrm{~V}$ to 4.5 V	23		ns
	DV ${ }_{\text {DD }}=3.6 \mathrm{~V}$ to 2.7 V	46		
SCLK pulse duration, clock low, t_{w} (SCLKL)	DV ${ }_{\text {DD }}=5.5 \mathrm{~V}$ to 4.5 V	23		ns
	DV ${ }_{\text {DD }}=3.6 \mathrm{~V}$ to 2.7 V	46		
I/O and control rise time, SCLK, FS, $\overline{\mathrm{CS}}$, SDIN		4		ns
I/O and control fall time, SCLK, FS, $\overline{\mathrm{CS}}$, SDIN		4		ns

TLV1570

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS

SERIAL ANALOG-TO-DIGITAL CONVERTER

SLAS169A - DECEMBER 1997- REVISED SEPTEMBER 1998

electrical characteristics,over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted)

digital specifications (SDOUT at 25 pF)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Logic inputs				
$\mathrm{I}_{\text {IH }} \quad$ High-level input current	$\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=5 \mathrm{~V}$		1	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$		-1	$\mu \mathrm{A}$
$\mathrm{C}_{\boldsymbol{l}} \quad$ Input capacitance	Control inputs	5	15	pF
Logic outputs				
$\mathrm{V}_{\mathrm{OH}} \quad$ High-level output voltage	$\mathrm{I}^{\mathrm{OH}}=50 \mu \mathrm{~A}-0.5 \mathrm{~mA}$	$\mathrm{DV}_{\mathrm{DD}}{ }^{-0.4}$		V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\mathrm{l}^{\mathrm{OL}}=50 \mu \mathrm{~A}-0.5 \mathrm{~mA}$		0.4	V
IOZH High-impedance-state output current			1	$\mu \mathrm{A}$
IOZL Low-impedance-state output current			-1	$\mu \mathrm{A}$
$\mathrm{CO}_{\mathrm{O}} \quad$ Output capacitance		5		pF

dc specifications

electrical characteristics, over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted) (continued)
dc specifications (continued)

\dagger IREF $=0.7 \mathrm{~mA}$ typ.
$\ddagger{ }^{\prime}$ REF $=1.5 \mathrm{~mA}$ typ.
ac specifications

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
SNR Signal-to-noise	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}, \\ & 70 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad A V_{D D}=5 \mathrm{~V}$	External reference	58	61		dB
			Internal reference	53	56		
		$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad A V_{D D}=3 \mathrm{~V}$	External reference	56	61		
			Internal reference	53	55		
	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=50 \mathrm{kHz}, \\ & 90 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$	External reference		61		
			Internal reference		56		
		$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad A V_{D D}=3 \mathrm{~V}$	External reference		61		
			Internal reference		55		
Signal-to-noise ratio + distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{j}}=100 \mathrm{kHz}, \\ & 70 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$	External reference	55	58		dB
			Internal reference	53	55		
		$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$	External reference	53	58		
			Internal reference	52	54		
	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=50 \mathrm{kHz}, \\ & 90 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad A V_{D D}=5 \mathrm{~V}$	External reference		59		
			Internal reference		55		
		$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad \mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$	External reference		60		
			Internal reference		55		
Total harmonic distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}, \\ & 70 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad A V_{D D}=5 \mathrm{~V}$	External reference		-60	-55	dB
			Internal reference		-70	-58	
		$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad A V_{D D}=3 \mathrm{~V}$	External reference		-60	-55	
			Internal reference		-66	-58	
	$\begin{aligned} & f_{i}=50 \mathrm{kHz} \\ & 90 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad \mathrm{AV} \mathrm{DD}=5 \mathrm{~V}$	External reference		-64		
			Internal reference		-72		
		$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad A V_{\text {DD }}=3 \mathrm{~V}$	External reference		-63		
			Internal reference		-68		

TLV1570
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS

SERIAL ANALOG-TO-DIGITAL CONVERTER
SLAS169A - DECEMBER 1997- REVISED SEPTEMBER 1998
ac specifications (continued)

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
SFDR	Spurious-free dynamic range	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}, \\ & 70 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$	External reference		-63	-57	dB
				Internal reference		-73	-59	
			$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad \mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$	External reference		-61	-57	
				Internal reference		-68	-60	
		$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=50 \mathrm{kHz}, \\ & 90 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$	External reference		-66		
				Internal reference		-75		
			$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad A V_{\text {DD }}=3 \mathrm{~V}$	External reference		-65		
				Internal reference		-70		
ENOB	Effective number of bits	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}, \\ & 70 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad \mathrm{AV} \mathrm{DD}=5 \mathrm{~V}$	External reference	8.8	9.3		dB
				Internal reference	8.6	8.9		
			$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad \mathrm{AV} \mathrm{DDD}=3 \mathrm{~V}$	External reference	8.6	9.3		
				Internal reference	8.4	8.8		
		$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=50 \mathrm{kHz}, \\ & 90 \% \text { of } \mathrm{FS} \end{aligned}$	$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MSPS}, \quad \mathrm{AV} \mathrm{DD}=5 \mathrm{~V}$	External reference		9.5		
				Internal reference		8.9		
			$\mathrm{f}_{\mathrm{S}}=625 \mathrm{KSPS}, \quad A V_{\text {DD }}=3 \mathrm{~V}$	External reference		9.5		
				Internal reference		8.9		
Analog Input								
	Channel-tochannel crosstalk					-75		dB
BW	Full-power bandwidth	-1 dB full-scale input sine wave			12	15		MHz
		-3 dB full-scale input sine wave				25		MHz
BW	Small-signal bandwidth	$-1 \mathrm{~dB}$			15	20		MHz
		-3 dB				35		MHz
f_{S}	Sampling rate	AV DD $=5 \mathrm{~V}$			0.0625		1.25	MSPS
		$\mathrm{AV}_{\text {DD }}=3 \mathrm{~V}$			0.0625		0.625	

timing requirements \dagger

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{C} (SCLK)	SCLK cycle time	$\mathrm{DV}_{\mathrm{DD}}=5.5 \mathrm{~V}$ to 4.5 V	50			ns
		DV ${ }_{\text {DD }}=3.6 \mathrm{~V}$ to 2.7 V	100			
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, chip select		100			ns
t_{s}	Sampling period			6		SLCK cycles
$\mathrm{t}_{\text {conv }}$	Conversion period			10		SLCK cycles
$\mathrm{t}_{\text {s1 }}$	Setup time, FS to SCLK falling edge in DSP mode		5			ns
th1	Hold time, FS to SCLK falling edge in DSP mode		2			ns
$\mathrm{t}_{\mathrm{s} 2}$	Setup time, FS to $\overline{\mathrm{CS}}$ falling edge in DSP mode		5.5			ns
th2	Hold time, FS to $\overline{\mathrm{CS}}$ falling edge in DSP mode		9			ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, FS falling edge to next SCLK falling edge in DSP mode		6			ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, SCLK rising edge after $\overline{\mathrm{CS}}$ falling edge in $\mu \mathrm{C}$ mode		4			ns
$t_{d} 3$	Delay time, output after SCLK rising edge in $\mu \mathrm{C}$ mode and DSP mode			10	20	ns
$\mathrm{t}_{\mathrm{s} 3}$	Setup time, serial input data to SCLK falling edge		10			ns
th3	Hold time, serial input data to SCLK falling edge		4			ns
tr_{r}	Rise time		3		200	ns

\dagger Specifications subject to change without notice.

Figure 7. DSP Mode Timing Diagrams

Figure 8. $\mu \mathrm{C}$ Mode Timing Diagrams

TYPICAL CHARACTERISTICS

Figure 9

SUPPLY CURRENT
vs
CLOCK FREQUENCY (SCLK)

Figure 11

TOTAL SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE

Figure 10

Figure 12

TYPICAL CHARACTERISTICS

DIFFERENTIAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 13
INTEGRAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 14

TYPICAL CHARACTERISTICS

DIFFERENTIAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 15
INTEGRAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 16

TYPICAL CHARACTERISTICS

DIFFERENTIAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 17
INTEGRAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 18

TYPICAL CHARACTERISTICS

DIFFERENTIAL NONLINEARITY ERROR
VS
DIGITAL OUTPUT CODE

Figure 19
INTEGRAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 20

TYPICAL CHARACTERISTICS

DIFFERENTIAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 21
INTEGRAL NONLINEARITY ERROR
vs
DIGITAL OUTPUT CODE

Figure 22

TYPICAL CHARACTERISTICS

Figure 23

EFFECTIVE NUMBER OF BITS
VS
INPUT FREQUENCY

Figure 25

EFFECTIVE NUMBER OF BITS
VS
INPUT FREQUENCY

Figure 24
EFFECTIVE NUMBER OF BITS
VS
INPUT FREQUENCY

Figure 26

TYPICAL CHARACTERISTICS

FAST FOURIER TRANSFORM

vs
FREQUENCY

Figure 27
FAST FOURIER TRANSFORM
vs
FREQUENCY

Figure 28

TYPICAL CHARACTERISTICS

FAST FOURIER TRANSFORM

VS
FREQUENCY

Figure 29
FAST FOURIER TRANSFORM
vs
FREQUENCY

Figure 30

Figure 31. Typical Timing Diagram for DSP Application

TYPICAL CHARACTERISTICS

Figure 32. Typical Timing Diagram for $\mu \mathrm{C}$ Application

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

