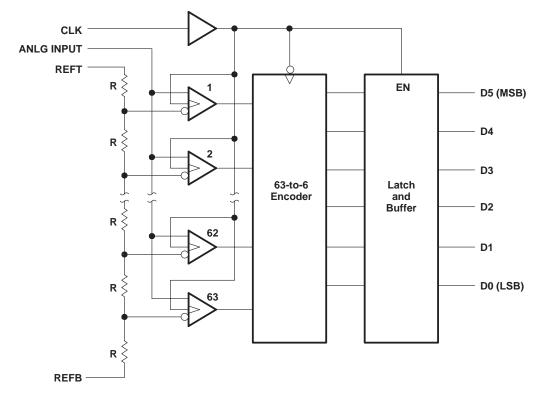

TL5501 6-BIT ANALOG-TO-DIGITAL CONVERTER

SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

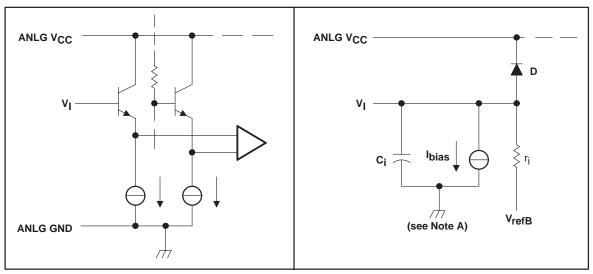


description

The TL5501 is a low-power ultra-high-speed video-band analog-to-digital converter that uses the Advanced Low-Power Schottky (ALS) process. It utilizes the full-parallel comparison (flash method) for high-speed conversion. It converts wide-band analog signals (such as a video signal) to a digital signal at a sampling rate of dc to 30 MHz. Because of this high-speed capability, the TL5501 is suitable for digital video applications such as digital TV, video processing with a computer, or radar signal processing.

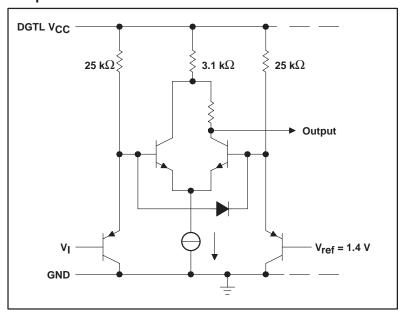
The TL5501 is characterized for operation from 0°C to 70°C.

functional block diagram



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

equivalents of analog input circuit


NOTE A: C_i – nonlinear emitter-follower junction capacitance

 r_i – linear resistance model for input current transition caused by comparator switching. $V_I < V_{refB}$: Infinite; CLK high: infinite.

V_{refB} – voltage at REFB terminal I_{bias} – constant input bias current

D – base-collector junction diode of emitter-follower transistor

equivalent of digital input circuit

FUNCTION TABLE

STEP	ANALOG INPUT VOLTAGE	DIGITAL OUTPUT CODE						
0	3.992 V	L	L	L	L	L	L	
1	4.008 V	L	L	L	L	L	Н	
	1							
31	4.488 V	L	Н	Н	Н	Н	Н	
32	4.508 V	Н	L	L	L	L	L	
33	4.520 V	Н	L	L	L	L	Н	
1	1							
62	4.984 V	н	Н	Н	Н	Н	L	
63	5.000 V	н	Н	Н	Н	Н	Н	

[†] These values are based on the assumption that V_{refB} and V_{refT} have been adjusted so that the voltage at the transition from digital 0 to 1 (V_{ZT}) is 4.000 V and the transition to full scale (V_{FT}) is 4.992 V. 1 LSB = 16 mV.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

S	upply voltage range, ANLG V _{CC} (see Note 1)	– 0.5 V to 7 V
S	upply voltage range, DGTL V _{CC}	0.5 V to 7 V
	nput voltage range at digital input, V _I	
In	nput voltage range at analog input, V _I	-0.5 V to ANLG V_{CC} +0.5 V
A	nalog reference voltage range, V _{ref}	-0.5 V to ANLG V_{CC} +0.5 V
St	torage temperature range	–55°C to 150°C
	perating free-air temperature range	
	ead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
NOTE 1:	All voltage values are with respect to the network ground terminal.	

recommended operating conditions

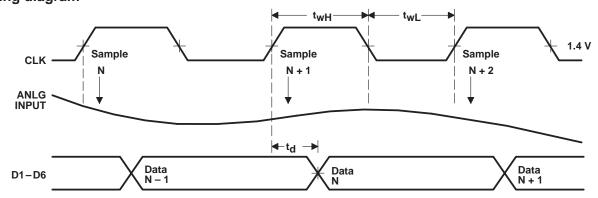
	MIN	NOM	MAX	UNIT
Supply voltage, ANLG V _{CC}	4.75	5	5.25	V
Supply voltage, DGTL V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, V _{IL}			0.8	V
Input voltage at analog input, V _I (see Note 2)	4		5	V
Analog reference voltage (top side), V _{refT} (see Note 2)	4	5	5.1	V
Analog reference voltage (bottom side), V _{refB} (see Note 2)	3	4	4.1	V
High-level output current, IOH	-400			μΑ
Low-level output current, IOL			4	mA
Clock pulse duration, high-level or low-level, t _W	25			ns
Operating free-air temperature, T _A	0		70	°C

NOTE 2: $V_{refB} < V_{I} < V_{refT}$, $V_{refT} - V_{refB} = 1 V \pm 0.1 V$.

TL5501 6-BIT ANALOG-TO-DIGITAL CONVERTER

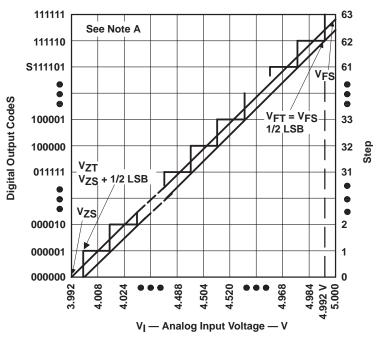
SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

electrical characteristics over operating supply voltage range, $T_A = 25^{\circ}C$ (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ΙΙ	Analog input ourrent		75			
	Analog input current	V _I = 4 V			73	μΑ
lН	Digital high-level input current	V _I = 2.7 V		0	20	μΑ
Ι _Ι L	Digital low-level input current	V _I = 0.4 V	- 400	-40		μΑ
lį	Digital input current	V _I = 7 V			100	μΑ
I _{refB}	Reference current	V _{IrefB} = 4 V		-4	-7.2	mA
I _{ref} T	Reference current	V _{IrefB} = 5 V		4	7.2	mA
VOH	High-level output voltage	I _{OH} = -400 μA	2.7			V
VOL	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
rį	Analog input resistance		100			kΩ
1C _i	Analog input capacitance			35	65	pF
ICC	Supply current			40	60	mA

operating characteristics over operating supply voltage range, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
EL	Linearity error				±0.8	%FSR
f _{max}	Maximum converstion rate		20	30		MHz
t _d	Digital output delay time	See Figure 3		15	30	ns


[†] All typical values are at V_{CC} = 5 V, V_{ref} = 4 V, T_A = 25°C.

timing diagram

TYPICAL CHARACTERISTICS

IDEAL CONVERSION CHARACTERISTICS

NOTE A: This curve is based on the assumption that V_{TefB} and V_{TefT} have been adjusted so that the voltage at the transition from digital 0 to 1 (V_{ZT}) is 4.000 V and the transition to full scale (V_{FT}) is 4.992 V. 1 LSB = 16 mV.

Figure 1

END-POINT LINEARITY ERROR

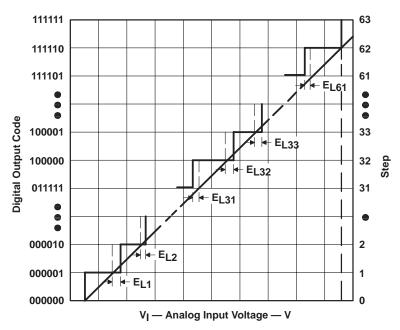


Figure 2

PARAMETER MEASUREMENT INFORMATION

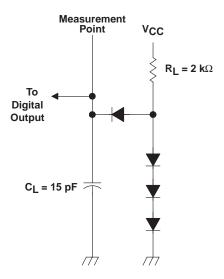


Figure 3. Load Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated