SCBS226G – JULY 1993 – REVISED JUNE 1999

•	Members of the Texas Instruments <i>Widebus</i> ™ Family	SN54ABTE1 SN74ABTE1624	6245 5 DG	. WD) PACKAGE R DL PACKAGE
•	State-of-the-Art <i>EPIC-</i> II <i>B</i> ™ BiCMOS Design Significantly Reduces Power Dissipation	1DIR [48	
•	Support the VME64 ETL Specification	1B1	2	47] 1A1
٠	Reduced, TTL-Compatible, Input Threshold	2B1	3	46	2A1
	Range	GND	4	45	GND
٠	High-Drive Outputs (I _{OH} = –60 mA,	1B2 L	5	44	1A2
	I_{OL} = 90 mA) Support 25- Ω Incident-Wave	2B2	6	43	2A2
	Switching	V _{CC}	7	42	V _{CC}
	V _{CC} BIAS Pin Minimizes Signal Distortion	1B3 L	8	41	1A3
	During Live Insertion	2B3 L	9	40	2A3
•	Internal Pullup Resistor on OE Keeps	GND L	10	39	
	Outputs in High-Impedance State During	1B4 L	11	38] 1A4
	Power Up or Power Down	2B4 L	12	3/	
•	Distributed Vcc and GND Pin Configuration		13	30	
	Minimizes High-Speed Switching Noise		14	34	GND
	Equivalent 25- Ω Series Damping Resistor	1B6	16	33	1A6
	on B Port	2B6	17	32	2A6
•	Bus Hold on Data Inputs Eliminates the	V _{CC}	18	31	V _{CC}
	Need for External Pullup/Pulldown	1B7	19	30	1A7
	Resistors	2B7 🛛	20	29	2A7
•	Package Options Include Plastic Shrink	GND [21	28	GND
	Small-Outline (DL) and Thin Shrink	1B8 [22	27	1A8
	Small-Outline (DGG) Packages and 380-Mil	2B8 [23	26	2A8
	Fine-Pitch Ceramic Flat (WD) Packages	2DIR [24	25	OE
	Using 25-mil Center-to-Center Spacings				

description

The 'ABTE16245 devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for synchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements. These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active.

The B port has an equivalent $25-\Omega$ series output resistor to reduce ringing. Active bus-hold inputs are also on the B port to hold unused or floating inputs at a valid logic level.

The A port provides for the precharging of the outputs via $V_{CC}BIAS$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.

The SN54ABTE16245 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABTE16245 is characterized for operation from -40° C to 85° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SCBS226G - JULY 1993 - REVISED JUNE 1999

FUNCTION TABLE (each 8-bit section)									
INPUTS									
OE	DIR	OPERATION							
L	L	A data to B bus							
L	н	B data to A bus							
н	Х	Isolation							

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} –	0.5	V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1) –	0.5	V to 7 V
Voltage range applied to any output in the high state or power-off state, V _O 0.	5 V	to 5.5 V
Current into any output in the low state, I _O		128 mA
Input clamp current, I_{IK} (V _I < 0)		–18 mA
Output clamp current, I_{OK} (V _O < 0)		–50 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package		89°C/W
DL package		94°C/W
Storage temperature range, T _{stg} 65	°C t	o 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

SCBS226G - JULY 1993 - REVISED JUNE 1999

recommended operating conditions (see Note 3)

			SN54	ABTE16	6245	SN74	ABTE16	6245	LINUT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V	High lovel input veltage	OE	2			2			V
VIН	r ign-iever input voltage	Except OE	1.6			1.6			v
V		OE			0.8			0.8	V
۷L	Low-level input voltage	Except OE			1.4			1.4	v
VI	Input voltage		0		VCC	0		VCC	V
	High lovel output current	B bus			-12			-12	m^
ЮН	nigh-level output current	A bus			-24			-60	IIIA
		B bus			12			12	m۸
'OL	Low-level output current	A bus			64			90	IIIA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
ТА	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS226G - JULY 1993 - REVISED JUNE 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEAT OF		SN	54ABTE1	6245	SN				
		TEST CO	JNDITIONS	MIN	түр†	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	lı = -18 mA			-1.2			-1.2	V	
		V _{CC} = 5.5 V,	I _{OH} = -100 μA			V _{CC} -0.2			V _{CC} -0.2		
	B port		I _{OH} = -1 mA	2.4			2.4				
Val		VCC = 4.5 V	I _{OH} = -12 mA	2			2			V	
⊻ОН		V _{CC} = 5.5 V,	I _{OH} = -1 mA			4.5			4.5	v	
	A port		I _{OH} = -32 mA	2.4			2.4				
		VCC = 4.5 V	I _{OH} =64 mA				2				
	D north		I _{OL} = 1 mA			0.4			0.4		
No.	в роп	VCC = 4.5 V	I _{OL} = 12 mA						0.8	V	
VOL	Anort		I _{OL} = 64 mA			0.55			0.55	V	
	A port $V_{CC} = 4.5 V$		I _{OL} = 90 mA						0.9		
			V _I = 0.8 V	100			100				
l _{l(hold)} l	B port	VCC = 4.3 V	V _I = 2 V	-100			-100			μA	
		V _{CC} = 5.5 V,	$V_I = 0$ to 5.5 V			±500			±500		
ı.	Control inputs	V _{CC} = 5.5 V,	$V_I = V_{CC} \text{ or } GND$			±1			±1		
ч -	A or B ports	V _{CC} = 5.5 V,	$V_I = V_{CC} \text{ or } GND$			±20			±20	μА	
IOZH [‡]	A port	V _{CC} = 5.5 V,	V _O = 2.7 V			10			10	μA	
IOZL [‡]	A port	V _{CC} = 5.5 V,	V _O = 0.5 V			-10			-10	μA	
	A port		$\lambda = 25 \lambda$	-50	-120	-180	-50		-180	~^^	
0	B port	VCC = 5.5 V,	VO = 2.5 V	-25	-52	-90	-25		-90	ША	
loff		$V_{CC} = 0, V_I \text{ or } V_O \leq$	4.5 V, V _{CC} BIAS = 0			±100			±100	μA	
		$V_{CC} = 5.5 V_{.}$	Outputs high		28	36		28	36		
ICC	A or B ports	$I_{O} = 0,$	Outputs low		38	48		38	48	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		20	32		20	32		
loop	A or R ports	V _{CC} = 5 V,	OE high		0.02			0.02		mA/	
'CCD		CL = 50 pF	OE low		0.33			0.33		MHz	
Ci	Control inputs	$V_{I} = 2.5 \text{ V or } 0.5 \text{ V}$				10		2.5	4	pF	
Cio	I/O ports	$V_{O} = 2.5 \text{ V or } 0.5 \text{ V}$				13		4.5	8	pF	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

SCBS226G - JULY 1993 - REVISED JUNE 1999

live-insertion specifications over recommended operating free-air temperature range

		TEST CONDITIONS				4ABTE1	6245	SN74			
			TEST CON	IDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT
	$V_{CC} = 0$ to 4.5 V, V_{CC} BIAS = 4.5 V to 5.5 V, $I_{O}(DC) = 0$					250	700		250	700	
$V_{CC} = 4.5 V \text{ to } 5.5 V^{\ddagger}, V_{CC} BIAS = 4.5 V \text{ to } 5.5 V^{\ddagger}, V_{CC} BIAS = 4.5 V \text{ to } 5.5 V^{\ddagger}$		IAS = 4.5 V to 5.5 V,			20			20	μΑ		
Ve	A port		$V_{CC}BIAS = 4$	4.5 V to 5.5 V	1.1	1.5	1.9	1.1	1.5	1.9	V
vO Ароп		ACC = 0	V _{CC} BIAS = 4.75 V to 5.25 V		1.3	1.5	1.7	1.3	1.5	1.7	v
			$V_{O} = 0,$	$V_{CC}BIAS = 4.5 V$	-20		-100	-20		-100	
0	А роп	VCC = 0	$V_{0} = 3 V_{1}$	V _{CC} BIAS = 4.5 V	20		100	20		100	μΑ

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] $V_{CC} - 0.5 \text{ V} < V_{CC}\text{BIAS}$

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER		TO (OUTPUT)	V(CC = 5 \ A = 25°C	/, ;	SN54ABT	E16245	SN74ABTI	74ABTE16245		
		(001F01)	MIN	TYP	MAX	MIN	MAX	MIN			
^t PLH	٨	B	1.5	3.3	4.2	1.5	5.4	1.5	5.2	200	
^t PHL	~	В	1.5	3.8	4.6	1.5	5.4	1.5	5.2	115	
^t PLH	P	٨	1.5	3	3.8	1.5	4.7	1.5	4.5		
^t PHL	в	В	A	1.5	3.1	4	1.5	4.7	1.5	4.5	115
^t PZH	ŌĒ		٨	2	3.9	5.3	2	6.4	2	6.2	
^t PZL		A	2	4.4	5.9	2	7	2	6.8	115	
^t PZH		P	2	4.5	6	2	7.3	2	7.1		
^t PZL	OE	В	2	5	6.4	2	7.5	2	7.3	115	
^t PHZ		٨	2	4.9	5.9	2	7	2	6.7		
^t PLZ	OE	A	2	3.7	4.6	2	5.4	2	5.1	115	
^t PHZ	05	В	2	5.2	6.2	2	7.2	2	7		
tPLZ	UE		2	4	5	2	5.8	2	5.5	115	

SCBS226G - JULY 1993 - REVISED JUNE 1999

extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER			LOAD	V(Tj	CC = 5 V A = 25°C	!, ;	SN54ABT	E16245	SN74ABTI	E16245	UNIT
		(001F01)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	D	٨	$P_{\rm M} = 12.0$	1.5	3.2	4	1.5	5	1.5	4.8	
^t PHL	D	A	Kχ = 13 32	1.5	3.8	4.7	1.5	5.8	1.5	5.6	115
^t PLH	D	٨	$B_{\rm M} = 26.0$	1.5	3.1	4	1.5	4.8	1.5	4.6	
^t PHL	D	A	Kχ = 20 32	1.5	3.5	4.4	1.5	5.2	1.5	4.9	115
^t PLH	р	А		1.5	3	3.8	1.5	4.7	1.5	4.5	
^t PHL	В		A	Rχ = 56 22	1.5	3.3	4.2	1.5	5.1	1.5	4.7
	В	А	Rχ = Open		0.1	0.6		2		2	
^t sk(p)	А	В			0.4	0.8		2		2	ns
	В	А	Rχ = 26 Ω		0.3	0.8		2		2	
	В	А	Rχ = Open		0.3	0.7		1.3		1.3	
^t sk(o)	А	В			0.7	1.1		1.3		1.3	ns
	В	А	Rχ = 26 Ω		0.5	1		1.3		1.3	
tt [†]	В	А	Rχ = 26 Ω	0.5	0.8	1.5	0.5	1.5	0.5	1.5	ns
tt‡	A	В	Rise or fall time 10%–90%	3.5	5.5	7.3	3.5	8.1	3.5	7.9	ns

[†] t_t is measured between 1 V and 2 V of the output waveform.

 \ddagger t_f is measured between 10% and 90% of the output waveform.

extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (see Figures 1 and 2)

DADAMETED	FROM	то	TEST CONDITIONS	1040	SN54ABTE	16245	SN74ABTE	16245	LINUT
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS				MIN	MAX	UNIT
+	А	В	V _{CC} = constant,			3		2.5	200
^t sk(temp)	В	A $\Delta T_A = 20^{\circ}C$		Rχ = 56 Ω		4.5		4	115
^t sk(load)	В	В	V _{CC} = constant, Temperature = constant	R _X = 13, 26, or 56 Ω		4.5		4	ns

SCBS226G - JULY 1993 - REVISED JUNE 1999

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Pulse skew, t_{sk(p)}, is defined as the difference in propagation delay times t_{PLH1} and t_{PHL1} on the same terminal at identical operating conditions.
 - B. Output skew, t_{sk(0)}, is defined as the difference in propagation delay of any two outputs of the same device switching in the same direction (e.g., |t_{PLH1} t_{PLH2}|).
 - C. Temperature skew, $t_{sk(temp)}$, is the output skew of two devices, both having the same value of $V_{CC} \pm 1\%$ and with package temperature differences of 20°C.
 - D. Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at 13 Ω for one unit and 56 Ω for the other unit.

Figure 1. Voltage Waveforms for Extended Characteristics

SCBS226G - JULY 1993 - REVISED JUNE 1999

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tt is measured between 1 V and 2 V of the output waveform.
- F. t_t is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated