OEAB

V_{CC} (3.3 V) **□**7

LEAB 🛛 2

GND 4

A1 🛮 3

A2 🛭 5

A3 ∐ 6

A4 🛮 8

A6 L 10

A8 🛮 13

A9 ∐ 14

A10 II 15

A11 116

A12 🛮 17

GND II 18

A13 | 19

A14 | 20

A15 🛮 21

A16 Π 23

A17 124

GND II 25

CLKIN 26

OEBA 27

V_{CC} (3.3 V) **□**22

GND 11

A7 ∐ 12

A5 L

SCBS481F – JUNE 1994 – REVISED NOVEMBER 1999

56 CEAB

55 CLKAB

54 🛮 B1

52 🛮 B2

49 🛮 B4

48 🛮 B5

∏ B6 47

46 GND

B8 44

41 B11

40 B12

38 **∏** B13

37 **∏** B14

36 B15

35 🛛 V_{REF}

34 | B16

33 B17

32

31

∏ GND

30 CLKBA

CLKOUT

🛮 GND

51 ∐ B3

45 ∐ B7

43 ll B9

42 Π B10

39

53 GND

50 V_{CC} (5 V)

SN54GTL16616... WD PACKAGE

SN74GTL16616...DGG OR DL PACKAGE

(TOP VIEW)

- **Members of the Texas Instruments** Widebus™ Family
- Universal Bus Transceiver (UBT™) **Combines D-Type Latches and D-Type** Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
- **GTL Buffered CLKAB Signal (CLKOUT)**
- Translate Between GTL/GTL+ Signal Levels and LVTTL Logic Levels
- Support Mixed-Mode (3.3 V and 5 V) Signal **Operation on A-Port and Control Inputs**
- Equivalent to '16601 Function
- Ioff Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown Resistors on A Port**
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Distributed V_{CC} and GND-Pin Configuration **Minimizes High-Speed Switching Noise**
- **Package Options Include Plastic Shrink** Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Ceramic Flat (WD) Packages

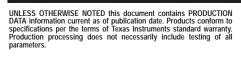
description

The 'GTL16616 devices are 17-bit universal transceivers (UBTs) that

provide LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL

29 T CEBA LEBA ∏28 signal-level translation. They combine D-type flip-flops and D-type latches to allow for transparent, latched, clocked, and clocked-enabled modes of data transfer identical to the '16601 function. Additionally, they provide for a copy of CLKAB at GTL/GTL+ signal levels (CLKOUT) and conversion of a GTL/GTL+ clock to LVTTL logic levels (CLKIN). The devices provide an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and output edge control (OEC™).

The user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{RFF} = 0.8 \text{ V}$) or the preferred higher noise margin GTL+ ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels. GTL+ is the Texas Instruments derivative of the Gunning transceiver logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port. V_{CC} (5 V) supplies the internal and GTL circuitry while V_{CC} (3.3 V) supplies the LVTTL output buffers.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, OEC, and UBT are trademarks of Texas Instruments Incorporated.

ISTRUMENTS

SCBS481F - JUNE 1994 - REVISED NOVEMBER 1999

description (continued)

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable ($\overline{\text{CEAB}}$ and $\overline{\text{CEBA}}$) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CEAB is low and CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB if CEAB also is low. When OEAB is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, CLKBA, and CEBA.

These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

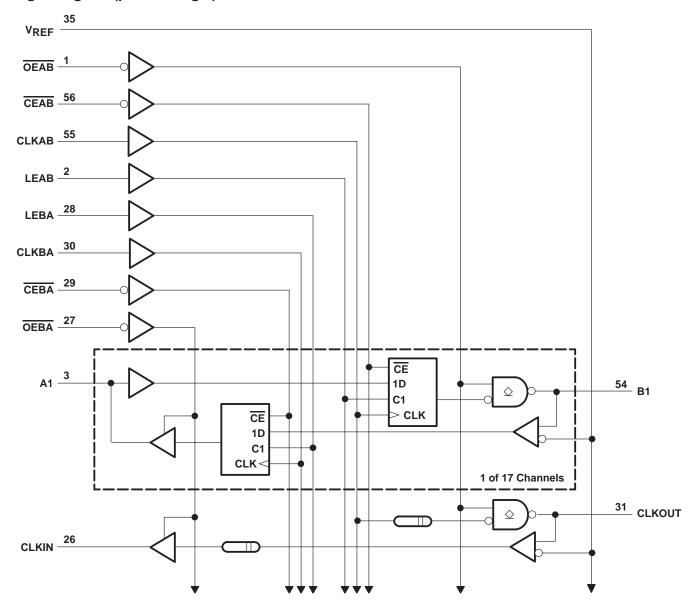
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54GTL16616 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74GTL16616 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE[†]

INPUTS					OUTPUT	MODE
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE
Х	Н	Х	Х	Χ	Z	Isolation
L	L	L	H or L	Х	в ₀ ‡	Latabad ataraga of A data
L	L	L	H or L	Χ	В ₀ §	Latched storage of A data
Х	L	Н	Х	L	L	Transparent
Х	L	Н	Χ	Н	Н	Transparent
L	L	L	↑	L	L	Clasked starage of A data
L	L	L	\uparrow	Н	н	Clocked storage of A data
Н	L	L	Х	Χ	B ₀ §	Clock inhibit

[†]A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA, LEBA, CLKBA, and CEBA.



[‡] Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

[§] Output level before the indicated steady-state input conditions were established

SCBS481F - JUNE 1994 - REVISED NOVEMBER 1999

logic diagram (positive logic)

SCBS481F - JUNE 1994 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} : 3.3 V	
Input voltage range, V _I (see Note 1): A-port and control inputs	–0.5 V to 7 V
B port and V _{REF}	
Voltage range applied to any output in the high or power-off state, VO	
(see Note 1): A port	–0.5 V to 7 V
B port	
Current into any output in the low state, IO: A port	
B port	
Current into any A-port output in the high state, IO (see Note 2)	64 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	64°C/W
DL package	56°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Notes 4 through 6)

			SN54GTL16616			SN	UNIT		
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
V/00	0	3.3 V	3.15	3.3	3.45	3.15	3.3	3.45	V
Vcc	Supply voltage	5 V	4.75	5	5.25	4.75	5	5.25	l v
\/	Termination	GTL	1.14	1.2	1.26	1.14	1.2	1.26	V
VTT	voltage	GTL+	1.35	1.5	1.65	1.35	1.5	1.65	V
V2==	Supply voltage	GTL	0.74	0.8	0.87	0.74	0.8	0.87	V
VREF	Supply voltage	GTL+	0.87	1 🖧	1.1	0.87	1	1.1	V
\/.	Input voltage	B port		FL	VTT			VTT	V
VI		Except B port		Q d	5.5			5.5	V
V	High-level	B port	VREF+50 m\	1 2		V _{REF} +50 mV			V
VIH	input voltage	Except B port	2	20		2			v
VIL	Low-level	B port	4	7	/ _{REF} -50 mV		,	V _{REF} -50 mV	V
VIL.	input voltage	Except B port			0.8			0.8	V
liK	Input clamp curren	t			-18			-18	mA
ІОН	High-level output current	A port			-32			-32	mA
la.	Low-level	A port			64			64	m A
IOL	output current	B port			40			40	mA
TA	Operating free-air t	emperature	– 55		125	-40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

- 5. Normal connection sequence is GND first, $V_{CC} = 5 \text{ V}$ second, and $V_{CC} = 3.3 \text{ V}$, I/O, control inputs, V_{TT} and V_{REF} (any order) last.
- V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances as long as they do not exceed the DC absolute I_{OL} ratings. Similarly, V_{REF} can be adjusted to optimize noise margins, but normally is 2/3 V_{TT}.

SCBS481F - JUNE 1994 - REVISED NOVEMBER 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DADAA	AETED	TEST COND	ITIONS	SN54	GTL1661	16	SN740	GTL1661	6	UNIT	
$ V_{OH} \ \ \begin{array}{l} V_{OH} \ \ \\ V_{OH} \ \ \\ V_{OC} \ \\ V$	PARAI	WEIER	TEST CONDI	ITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII	
$V_{OH} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	VIK		V_{CC} (3.3 V) = 3.15 V, V_{CC} (5	V) = 4.75 V, I _I = -18 mA			-1.2			-1.2	V	
$V_{CL} = \begin{cases} V_{CC} (3.3 \ V) = 3.15 \ V, \\ V_{CC} (5 \ V) = 4.75 \ V \end{cases} \qquad \begin{cases} I_{OH} = -32 \ mA \\ I_{OH} = -32 \ mA \\ O = 2 \end{cases} \qquad 2 \qquad 2$	Vон	A port	3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			V _{CC} -0.2			V	
$VOL \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	011	'	V _{CC} (3.3 V) = 3.15 V,	I _{OH} = -8 mA	2.4			2.4				
$V_{CL} = \begin{cases} A \text{ port} & V_{CC}(3.3 \text{ V}) = 3.15 \text{ V}, \\ V_{CC}(5 \text{ V}) = 4.75 \text{ V} & O_{L} = 16 \text{ mA} & 0.4 \\ O_{L} = 32 \text{ mA} & 0.5 \\ I_{OL} = 64 \text{ mA} & 0.55 \\ I_{OL} = 64 \text{ mA} & 0.55 \\ I_{OL} = 64 \text{ mA} & 0.4 \\ I_{OL} = 40 \text{ mA} & 0.4 \\ $			V _{CC} (5 V) = 4.75 V	$I_{OH} = -32 \text{ mA}$	2			2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				I _{OL} = 100 μA			0.2			0.2		
VOL VCC (3 3 V) = 4.75 V IQL = 32 mA 0.5 IQL = 64 mA 0.55 0.5 IQL = 64 mA 0.55 0.5 IQL = 40 mA 0.4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		A nort	V_{CC} (3.3 V) = 3.15 V,	I _{OL} = 16 mA			0.4			0.4		
	V/Q1	A port	V_{CC} (5 V) = 4.75 V	I _{OL} = 32 mA			0.5			0.5	V	
$ I_{\text{I}} \\ I_{\text{I}} I_{\text{I}} \\ I_{\text{I}} \\ I_{\text{I}} \\ I_{\text{I}} \\ I_{$	VOL			I _{OL} = 64 mA			0.55			0.55	ı v	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		B port		I _{OL} = 40 mA			0.4			0.4		
$\begin{array}{l lllllllllllllllllllllllllllllllllll$				V _I = 5.5 V			10			10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				V _I = 5.5 V		20				20		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l _l	A port		$V_{I} = V_{CC} (3.3 \text{ V})$			1			1	μΑ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•			V _I = 0		4	-30			-30	·	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		D ====	V _{CC} (3.3 V) = 3.45 V,	V _I = V _{CC} (3.3 V)		4	5			5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		в роп		V _I = 0		07	- 5			- 5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l _{off}		$V_{CC} = 0$, V_{I} or $V_{O} = 0$ to 4.5 V	·		2	100			100	μΑ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				V _I = 0.8 V	75 \$	75 🖇		75				
	I _I (hold)	A port		V _I = 2 V				-75			μΑ	
$ \begin{array}{ c c c c c } \hline \text{IOZH} & B \ \text{port} & V_{\text{CC}} (3.3 \ \text{V}) = 3.45 \ \text{V}, V_{\text{CC}} (5 \ \text{V}) = 5.25 \ \text{V}, V_{\text{O}} = 1.2 \ \text{V} \\ \hline \hline \text{IOZL} & A \ \text{port} & V_{\text{CC}} (3.3 \ \text{V}) = 3.45 \ \text{V}, V_{\text{CC}} (5 \ \text{V}) = 5.25 \ \text{V}, V_{\text{O}} = 0.5 \ \text{V} \\ \hline \hline \text{B port} & V_{\text{CC}} (3.3 \ \text{V}) = 3.45 \ \text{V}, V_{\text{CC}} (5 \ \text{V}) = 5.25 \ \text{V}, V_{\text{O}} = 0.4 \ \text{V} \\ \hline \hline \text{B port} & V_{\text{CC}} (3.3 \ \text{V}) = 3.45 \ \text{V}, V_{\text{CC}} (5 \ \text{V}) = 5.25 \ \text{V}, V_{\text{O}} = 0.4 \ \text{V} \\ \hline \text{Outputs high} & 1 \\ \hline \text{Outputs low} & 5 \\ \hline \text{Outputs disabled} & 1 \\ \hline \text{Outputs disabled} & 1 \\ \hline \hline \text{Outputs high} & 120 \\ \hline \text{Outputs low} & 120 \\ \hline \text{Outputs low} & 120 \\ \hline \text{Outputs disabled} & 120 \\ \hline \hline \hline \hline \text{Outputs disabled} & 120 \\ \hline \hline \hline \hline \text{Outputs disabled} & 120 \\ \hline \hline \hline \hline \text{Outputs disabled} & 120 \\ \hline \hline \hline \hline \text{Outputs disabled} & 120 \\ \hline \hline \hline \hline \hline \text{Outputs disabled} & 120 \\ \hline \hline \hline \hline \hline \text{Outputs disabled} & 120 \\ \hline $			VCC (0 V) = 4.70 V	$V_{I} = 0 \text{ to } V_{CC} (3.3 \text{ V})^{\ddagger}$	2		±500			±500		
	l = · ·	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5	V) = 5.25 V, V _O = 3 V			1			1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'OZH	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5	V) = 5.25 V, V _O = 1.2 V			10			10	μΑ	
	la	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5	V) = 5.25 V, V _O = 0.5 V			-1			-1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IOZL	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5	V) = 5.25 V, V _O = 0.4 V			-10			-10	μΑ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{CC} (3.3 V) = 3.45 V.	Outputs high			1			1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{CC} (5 V) = 5.25 V, I_{O} = 0,	Outputs low			5			5	mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3.3 V)	Port	$V_I = V_{CC}$ (3.3 V) or GND	Outputs disabled			1			1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		$V_{CC}(3.3 \text{ V}) = 3.45 \text{ V}.$	Outputs high			120			120		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{CC} (5 V) = 5.25 V, I_{O} = 0,	Outputs low			120			120	mA	
ΔI_{CC} A-port or control inputs at V_{CC} (3.3 V) or GND, 1 C _i Control inputs $V_{I} = 3.15 \text{ V or } 0$ 3.5 3.5	(3 V)	Port	$V_I = V_{CC}$ (3.3 V) or GND	Outputs disabled			120			120		
$V_{\parallel} = 3.15 \text{ V or U}$ 3.5	Δlcc§		A-port or control inputs at VCC				1			1	mA	
	Ci		V _I = 3.15 V or 0			3.5			3.5		pF	
A port $V_0 = 3.15 \text{ V or } 0$ 12	C	A port	$V_0 = 3.15 \text{ V or } 0$			12			12		pF	
B port Per IEEE Std 1194.1 5	⁰ 10	B port	Per IEEE Std 1194.1				5			5	Pι	

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SCBS481F – JUNE 1994 – REVISED NOVEMBER 1999

timing requirements over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$ for GTL (unless otherwise noted) (see Figure 1)

•			MIN MAX		SN74GTL	16616	UNIT	
					MIN	MAX	UNII	
f _{clock}	Clock frequency			95		95	MHz	
	Dulas duration	LEAB or LEBA high	3.3		3.3			
t _W	Pulse duration	CLKAB or CLKBA high or low	5.5		5.5		ns	
	A before CLKAB↑	1.3		1.3				
		B before CLKBA↑	2.5	N.	2.5			
	Setup time A before LEAB↓ B before LEBA↓ CEAB before CLKAB↑	A before LEAB↓	0	J.	0			
t _{su}		B before LEBA↓	1.1	2-	1.1		ns	
		CEAB before CLKAB↑	2.2	,	2.2			
		CEBA before CLKBA↑	2.7		2.7			
		A after CLKAB↑	1.6		1.6			
		B after CLKBA↑	0.4		0.4			
	I lald time a	A after LEAB↓	4		4		7	
^t h	Hold time	B after LEBA↓	3.5		3.5		ns	
		CEAB after CLKAB↑	1.1		1.1			
		CEBA after CLKBA↑	0.9		0.9			

SCBS481F - JUNE 1994 - REVISED NOVEMBER 1999

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V and V_{REF} = 0.8 V for GTL (see Figure 1)

DADAMETED	FROM	то	SN5	4GTL16	616	SN7	SN74GTL16616			
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
f _{max}			95			95			MHz	
t _{PLH}	А	В	1.4	3	4.6	1.7	3	4.4	ns	
^t PHL	^	Ь	1.2	2.8	4.7	1.4	2.8	4.5	115	
t _{PLH}	LEAB	В	2.1	3.8	5.6	2.3	3.8	5.4	ns	
^t PHL	LLAD	Ь	1.9	3.7	5.6	2.2	3.7	5.3	115	
^t PLH	CLKAB	В	2.2	4	5.9	2.4	4	5.7	ns	
^t PHL		Ь	1.8	3.7	5.7	2.1	3.7	5.4	115	
^t PLH	CLKAB	CLKOUT	4.5	6.1	8.2	4.7	6.1	8.1	ns	
^t PHL		CLROUT	5.5	7.9	11.4	5.7	7.9	11.3	115	
^t dis	OEAB	B or CLKOUT	2	3.8	5.8	2.1	3.8	5.6	ns	
t _{en}			2	3.6	5.2	2.1	3.6	5.1		
t _r	Transition time, B o	utputs (0.5 V to 1 V)		\$ 1.2			1.2		ns	
t _f	Transition time, B or	utputs (1 V to 0.5 V)	ć	0.7			0.7		ns	
^t PLH	В	А	1.6	4	6.8	1.7	4	6.7	ns	
^t PHL			1.3	2.9	4.7	1.4	2.9	4.7	115	
^t PLH	LEBA	А	2.3	3.8	6.1	2.4	3.8	5.8	ns	
^t PHL	LLDA	^	1.9	3	4.8	2	3	4.6	113	
^t PLH	CLKBV	^	2.5	4	6.3	2.6	4	6	ns	
^t PHL	CLKBA	A	2.1	3.4	5.1	2.2	3.4	4.9	l iis	
^t PLH	CLKOUT	CLKIN	7.2	10	14.7	7.4	10	14.4	ns	
^t PHL	CLROOT	CLKIN	5.9	8.1	11.8	6.1	8.1	11.7	119	
^t en	 OEBA	A or CLKIN	2.7	5.3	8.1	2.8	5.3	7.8	ns	
^t dis	OEBA	A OI OLKIN	2.6	4.3	6.7	2.7	4.3	6.4	115	

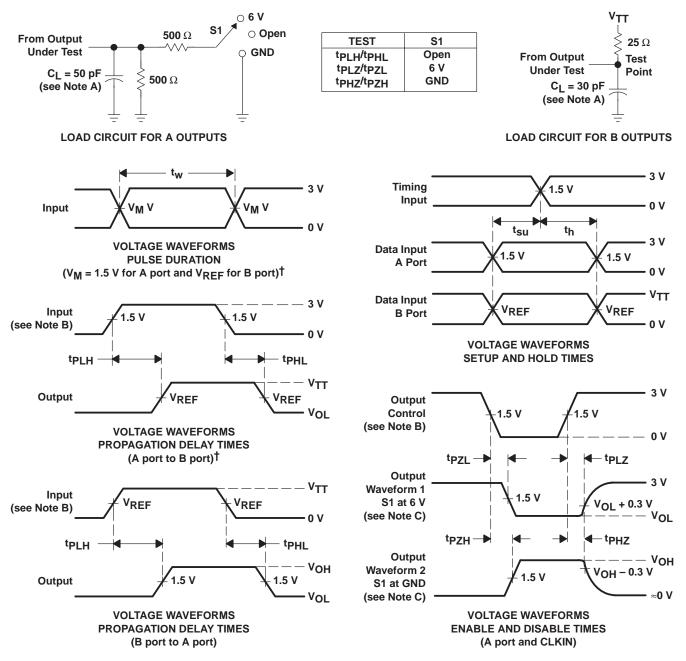
[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SCBS481F – JUNE 1994 – REVISED NOVEMBER 1999

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (unless otherwise noted) (see Figure 1)

			SN54GTL16616		SN74GTL16616		UNIT		
			MIN	MAX	MIN	MAX	UNIT		
f _{clock}	Clock frequency			95		95	MHz		
+	Pulse duration	LEAB or LEBA high	3.3		3.3		ne		
t _W	CLKAB or CLKBA high or low	5.5		5.5		ns			
		A before CLKAB↑	1.3		1.3				
	Setup time	B before CLKBA↑	2.3	3	2.3				
		A before LEAB↓	0	N.	0				
t _{su}		B before LEBA↓	1.3	Q-7	1.3		ns		
		CEAB before CLKAB↑	2.2	,	2.2				
		CEBA before CLKBA↑	2.7		2.7				
		A after CLKAB↑	9.6		1.6				
		B after CLKBA↑	0.6		0.6				
4.	l la lal time a	A after LEAB↓	4		4				
th	Hold time	B after LEBA↓	3.5		3.5		ns		
		CEAB after CLKAB↑	1.1		1.1		ĺ		
		CEBA after CLKBA↑	0.9		0.9				

SCBS481F - JUNE 1994 - REVISED NOVEMBER 1999


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 1)

DADAMETED	FROM	то	SN5	4GTL16	616	SN7	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII
f _{max}			95			95			MHz
t _{PLH}	А	В	1.4	3	4.6	1.7	3	4.4	ns
t _{PHL}	Α	Ь	1.2	2.9	4.8	1.4	2.9	4.6	115
t _{PLH}	LEAB	В	2.1	3.8	5.6	2.3	3.8	5.4	ns
^t PHL	LLAD	Ь	1.9	3.7	5.7	2.2	3.7	5.4	115
^t PLH	CLKAB	В	2.2	4	5.9	2.4	4	5.7	ns
^t PHL	CLKAB	Ь	1.8	3.8	5.8	2.1	3.8	5.5	115
^t PLH	CLKAB	CLKOUT	4.5	6.1	8.2	4.7	6.1	8.1	ns
^t PHL		CLKOUT	5.5	8	11.5	5.7	8	11.4	115
^t PLH	OEAB	B or CLKOUT	2	3.6	5.2	2.1	3.6	5.1	ns
^t PHL			2	3.8	5.9	2.1	3.8	5.7	
t _r	Transition time, B or	utputs (0.5 V to 1 V)		\$ 1.4			1.4		ns
t _f	Transition time, B or	utputs (1 V to 0.5 V)	Ć	3 1			1		ns
^t PLH	В	А	1.5	3.9	6.8	1.6	3.9	6.6	ns ns
^t PHL	В	A	1.2	2.8	4.5	1.3	2.8	4.5	
^t PLH	LEBA	А	2.3	3.8	6.1	2.4	3.8	5.8	- ns
^t PHL	LLDA	A	1.9	3	4.8	2	3	4.6	
^t PLH	CLKBA	Λ.	2.5	4	6.3	2.6	4	6	20
^t PHL	CLNDA	А	2.1	3.4	5.1	2.2	3.4	4.9	ns
^t PLH	OLKOUT	CLKIN	7.1	9.9	14.7	7.3	9.9	14.3	20
^t PHL	CLKOUT	CLNIN	5.8	8	11.6	6	8	11.5	ns
^t en	OEBA	A or CLKIN	2.7	5.3	8.1	2.8	5.3	7.8	ns
^t dis	UEDA	A OI CLININ	2.6	4.3	6.7	2.7	4.3	6.4	119

 $[\]dagger$ All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SCBS481F - JUNE 1994 - REVISED NOVEMBER 1999

PARAMETER MEASUREMENT INFORMATION $V_{TT} = 1.2 \text{ V}$, $V_{REF} = 0.8 \text{ V}$ FOR GTL AND $V_{TT} = 1.5 \text{ V}$, $V_{REF} = 1 \text{ V}$ FOR GTL+

† All control inputs are TTL levels.

NOTES: A. C_I includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated