S E M I C O N D U C TOR1, I N C.

The TQ8015 is a non-blocking 16×16 digital crosspoint switch capable of data rates greater than 1.25 Gigabits per second per port. Utilizing a fully differential internal data path and ECL I/0, the TQ8015 offers a high data rate with exceptional signal fidelity. The symmetrical switching and noise rejection characteristics inherent in differential logic result in low jitter and signal skew. The TQ8015 is ideally suited for digital video, data communications and telecommunication switching applications.

The non-blocking architecture uses 16 fully independent 16:1 multiplexers (see diagram on page 2), allowing each output port to be independently programmed to any input port. The switch is configured by sequentially loading each multiplexer's 4-bit program latch (OAO:3) with the desired input port address (IAO:3) and enabling the LOAD pin. When complete, the CONFIGURE pin is strobed and all new configurations are simultaneously transferred into the switch multiplexers. Data integrity is maintained on all unchanged data paths.

Electrical Characteristics

	Min	Max	Units
Data Rate/Port	1.25		Gb/s
Jitter		150	ps peak-peak
Channel Propagation Delay		2000	ps
Ch-to-Ch Propagation Delay Skew		500	ps

TQ8015

1.25 Gigabit/sec 16x16 Digital ECL Crosspoint Switch

Typical output waveform with all channels driven

Features

- >20 Gb/s aggregate BW
- $1.25 \mathrm{~Gb} / \mathrm{s} /$ port NRZ data rate
- Non-blocking architecture
- 500 ps delay match
- Differential ECL-level data I/O; CMOS-level control inputs
- Low jitter and signal skew
- Fully differential data path
- Double buffered configuration latches
- 132-pin MQFP package

Applications

Telecom/Datacom Switching
Hubs and Routers
Video Switching

Figure 1. TQ8015 architecture.

Table 1. Absolute Maximum Ratings ${ }^{5}$

Symbol	Parameter	Absolute Max. Rating	Notes
TSTOR	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
T_{CH}	Junction (Channel) Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	1
T_{C}	Case Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2
$V_{\text {c }}$	Supply Voltage	0 V to +7 V	3
$\mathrm{V}_{\text {EE }}$	Supply Voltage	-7 V to 0 V	3
$V_{T T}$	Load Termination Supply Voltage	$\mathrm{V}_{\text {EE }}$ to 0 V	4
$\mathrm{V}_{\text {IN }}$	Voltage Applied to Any ECL Input; Continuous	$\mathrm{V}_{\text {EE }}-0.5 \mathrm{~V}$ to +0.5 V	
$\mathrm{I}_{\text {IN }}$	Current Into Any ECL Input; Continuous	-1.0 mA to +1.0 mA	
$\mathrm{V}_{\text {IN }}$	Voltage Applied to Any CMOS Input; Continuous	-0.5 V to $\mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}$	
$1 \times$	Current Into Any CMOS Input; Continuous	-1.0 mA to +1.0 mA	
$\mathrm{V}_{\text {OUT }}$	Voltage Applied to Any ECL Output	$\mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V}$ to +0.5 V	4
$\mathrm{I}_{\text {OUT }}$	Current From Any ECL Output; Continuous	-40 mA	
P_{D}	Power Dissipation per Output $\mathrm{P}_{\text {OUT }}=\left(\mathrm{GND}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\text {OUT }}$	50 mW	

Notes: 1. For die applications.
2. T_{C} is measured at case top.
3. All voltages specified with respect to GND, defined as OV.
4. Subject to Iout and power dissipation limitations.
5. Absolute maximum ratings, as detailed in this table, are the ratings beyond which the device's performance may be impaired and/or permanent damage to the device may occur.

Table 2. Recommended Operating Conditions ${ }^{3}$

Symbol	Parameter	Min	Typ	Max	Units	Notes
T_{C}	Case Operating Temperature	0		85	${ }^{\circ} \mathrm{C}$	1
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage	4.5		5.5	V	
$\mathrm{~V}_{\mathrm{EE}}$	Supply Voltage	-5.5		-4.5	V	
$\mathrm{~V}_{\mathrm{TT}}$	Load Termination Supply Voltage		-2.0		V	2
$\mathrm{R}_{\mathrm{LOAD}}$	Output Termination Load Resistance		50		Ω	2
Θ_{JC}	Thermal Resistance Junction to Case			7	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes: 1. T_{C} measured at case top. Use of adequate heatsink is required.
2. The $V_{T T}$ and $R_{\text {LOAD }}$ combination is subject to maximum output current and power restrictions.
3. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified.

Table 3. Pin Descriptions

TQ8015

Table 4. DC Characteristics ${ }^{1}$ - Within recommended operating conditions, unless otherwise indicated.

Symbol	Parameter	Min	Max	Units	Test Cond.	Notes
V_{IH}	ECL Input Voltage High	-1100	-500	mV		
$\mathrm{V}_{\text {IL }}$	ECL Input Voltage Low	$\mathrm{V}_{T T}$	-1500	mV		
$\mathrm{IIH}^{\text {I }}$	ECL Input Current High		+30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=-0.7 \mathrm{~V}$	
IIL	ECL Input Current Low	-30		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IL }}=-2.0 \mathrm{~V}$	
VICM	ECL Input Common Mode Voltage	-1500	-1100	mV		
$V_{\text {IIIF }}$	ECL Input Differential Voltage (pk-pk)	400	1200	mV		
$\mathrm{V}_{\text {IH }}$	CMOS Input Voltage High	3.5	$\mathrm{V}_{\text {CC }}$	V		
$\mathrm{V}_{\text {IL }}$	CMOS Input Voltage Low	0	1.5	V		
$\mathrm{IIH}^{\text {I }}$	CMOS Input Current High		+100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}$	
1 IL	CMOS Input Current Low		-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	
$V_{\text {OCM }}$	ECL Output Common Mode	-1500	-1100	mV		
$\mathrm{V}_{\text {ODIF }}$	ECL Output Differential Voltage	600		mV		
V_{OH}	ECL Output Voltage High	-1000	-600	mV		
$\mathrm{V}_{\text {OL }}$	ECL Output Voltage Low	$\mathrm{V}_{T T}$	-1600	mV		
$\mathrm{IOH}_{\mathrm{OH}}$	ECL Output Current High	20	27	mA		
$\mathrm{I}_{0 \mathrm{~L}}$	ECL Output Current Low	0	8	mA		
$\mathrm{I}_{\text {CC }}$	Power Supply Current (+)		20	mA		
$\mathrm{l}_{\text {EE }}$	Power Supply Current (-)		-950	mA		

Notes: 1. Test conditions unless otherwise indicated: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50 \mathrm{~W}$ to $V_{T T}$.
Table 5. AC Characteristics ${ }^{1}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | Notes

Notes: 1. Test conditions: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50 \mathrm{~W}$ to $V_{T T}$; $E C L$ inputs: $V_{I H}=-1.1 \mathrm{~V} ; V_{I L}=-1.5 \mathrm{~V}$; CMOS inputs: $V_{I H}=3.5 \mathrm{~V}, V_{I L}=1.5 \mathrm{~V}$; ECL outputs: $V_{O H} \geq-1.0 \mathrm{~V}, V_{O L} \leq-1.6 \mathrm{~V}$; ECL inputs rise and fall times $\leq 1 \mathrm{~ns}$; CMOS inputs rise and fall times $\leq 20 \mathrm{~ns}$. A bit error rate of $1 E-13$ BER or better for $2^{23}-1$ PRBS pattern, jitter and rise/fall times are guaranteed through characterization.
2.1.2 Gb/s Non-Return-Zero (NRZ) data equivalent to 600 MHz clock signal.
3. Rise and fall times are measured at the 20% and 80% points of the transition from $V_{\text {OL }}$ max to $V_{O L}$ min.

Figure 2. Switch Configuration Timing

Figure 5. Reset Timing

Notes: 1. LOAD input must remain LOW to insure correct programming of the switch.
2. "Broadcast" is defined as data input 0 to all data outputs (0...15).
3. "Pass-through" is defined as data input 0 to data output 0 , data input 1 to data output 1 , and so on.

Typical Performance Data

Figure 4. Data Eye Closure
Percent RMS vs. Data Rate (typical)

Figure 6. RMS Jitter vs. Data Rate (typical)

Figure 5. Data Eye Closure
Time \& Amplitude vs Data Rate (typical)

Figure 7. Package Pinout

Figure 8. Mechanical Dimensions (in inches)

Section A-A

Ordering Information

TQ8015-Q $\quad 1.2516 \times 16$ Gb/s ECL Crosspoint Switch

Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com

For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^0]
[^0]: The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
 Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
 Revision 1.1.A November 1997

