

The TQ8033 is a non-blocking 64 x 33 digital crosspoint switch that supports data rates greater than 1.5 gigabits per second per channel. The TQ8033's non-blocking architecture allows any combination of output-to-input programming, supporting both broadcast and multicast applications. Using 33 independent 64:1 multiplexers, each output channel can be programmed to any input without restriction or degradation of signal fidelity.

The TQ8033's architecture is ideally suited for building larger switch arrays. By eliminating the need to "wire-or" or buss the outputs to interconnect multiple devices, the maximum system bandwidth and signal fidelity is achived.

Designed for use in high-performance / high-capacity switching applications, the TQ8033 data path is fully differential to minimize jitter, skew, and signal distortion. The data path interface levels are PECL and the configuration and control interface levels are TTL.

The TQ8033 is the ideal switching solution for HDTV digital video, data communications (Fibre Channel and Gigabit Ethernet) and telecommunications applications.

TQ8033

DATA SHEET

1.5 Gbit/sec 64x33 Expandable Crosspoint Switch

Features

- >1.5 Gb/s/port data rate>50 Gb/s aggregate bandwidth
- Differential PECL data path with 64 inputs and 33 outputs
- Non-blocking architecture supports Broadcast and Multicast operation
- Data inputs internally biased for AC coupling
- Low jitter and signal skew
- Double-buffered configuration latches
- TTL configuration control inputs
- 304-pin BGA package
- Single +5V supply

Applications

- Telecom/datacom switching including Fibre Channel and Gigabit Ethernet
- Hubs and routers
- Video switching including High-Definition TV (HDTV)

T08033

DATA SHEET

Circuit Description

Data Inputs

The 64 data input channels are differential PECL compatible. All inputs have a $2.5 \mbox{K}\Omega$ Thevenin equivalent bias circuit which holds the DC bias at $\mbox{V}_{DD}\mbox{-}1.3$ Volts simplifying the design of applications requiring AC coupling. Input signals must be properly terminated for maximum performance. Terminate one side (true or complement) of any unused inputs to \mbox{V}_{TT} .

Data Outputs

The 33 data output channels are differential PECL compatible and designed to be terminated to 50Ω to V_{DD} -2.0 Volts. Unused outputs can be left unterminated if desired in order to save power.

Control Inputs

The control inputs interface levels are TTL compatible.

Program Registers

The configuration data for each of the 33 data channels have two sets, or stages, of configuration storage registers. The first stage, known as the program register, stores a new set of input configurations prior to application to the switch core. The second stage, known as the configuration register, stores the current switch core configurations.

The use of two stage configuration storage registers allows new input configurations to be loaded without disturbing the existing configuration. After the new input configurations have been loaded into the program registers, the CONFIGURE input is asserted and the new configurations are applied to the switch core.

To program the TQ8033, the address of the desired output port is applied to the inputs (OADD0:4; where 00000=00 and 11111=031). The address of the desired input port is applied to the inputs (IADD0:5; where 000000=I0 and 111111=I63).

The new configuration is loaded into the program registers by asserting the LOAD signal high. The data is latched when LOAD is de-asserted. LOAD should remain low and only be asserted for the time necessary to load the new configuration data.

The process is repeated for each output port configuration. Only the output ports which are to receive a new input port configuration need to be programmed. The new configurations are not applied to the switch core at this time and there is no disruption of the data flowing through the switch core.

After the new configurations have been loaded into the program registers, the CONFIGURE input is asserted and the data in the program registers is loaded into the configuration registers. The data is latched on the falling edge of CONFIGURE.

The switch core receives the new configuration as soon as CONFIGURE is asserted. During the time the new configurations are being applied to the switch core, the integrity of the data on output ports which receive a new configuration is unknown for a period of *tdcf* from the time CONFIGURE is asserted.

If desired, the LOAD and CONFIGURE can be asserted simultaneously. In this mode, the new configuration will be applied to the switch core when LOAD is asserted.

TQ8033

DATA SHEET

Programming the Monitor Port

The 33rd output port, called the monitor port, is programmed in the same manner as the other 32 output ports with the exceptions that the LOAD and Output Address inputs are ignored.

To program the monitor port, apply the desired input port address to inputs (IADD0:5) and assert the MONITOR_LD input. Like the other 32 output ports, the CONFIGURE input is asserted to apply the new configuration to the switch core.

Reset Programming

The RESETIN is an active high input which sets all of the switch multiplexers to a defined configuration. There are three RESET modes available when RESETIN is used in conjunction with CONFIGURE and IADD5 inputs.

The monitor port is reset to input D0 regardless of the state of CONFIGURE or IADD5.

Mode 1 is broadcast operation. In this mode, the RESETIN signal clears all of the configuration registers immediately forcing all output ports to be connected to input port 0. The device will remain in the Mode 1 reset state as long as the RESETIN input is asserted.

Modes 2 and 3 place the device into pass-through configuration. The mode is controlled by the assertion of CONFIGURE immediately following the de-assertion of RESETIN and the state of input IADD5.

Mode 2, or low-order pass-through, is set with the assertion of CONFIGURE with IADD5 input low. In this mode, inputs D0 to D31 are configured to outputs O0 to O31 respectively (D0 to O0, D1 to O1,,,D31 to O31).

Mode 3, or high-order pass-through, is set with the assertion of CONFIGURE with IADD5 input high. In this mode, inputs D32 to D63 are configured to outputs O0 to O31 respectively (D32 to O0, D33 to O1,,,D63 to O31).

Reset Configuration Modes

<u>Mode</u>	RESETIN	CONFIGURE**	IADD5**	RESET Configuration
1	1	0	Χ	Broadcast mode. All outputs programmed to input 0
2	1	1	0	Low-order Pass-through mode #1.
3	1	1	1	High-order Pass-through mode #2.

^{**} Valid only when asserted immediately following de-assertion of RESETIN and prior to any new program cycles.

Building Switch Arrays with the TQ8033

By eliminating the need to "wire-or" the outputs of multiple devices or to add additional switch elements to get the necessary routing channels, the TQ8033 offers the highest performance solution with the least number of devices for implementing larger array sizes.

The 33rd output port provides an additional data channel for system data links or for diagnostics system monitoring of each switch element within the array. The following examples show how to interconnect multiple TQ8033 devices to create a 64x64 and a 128x128 switch array.

64x64 Switch Array

To implement a 64x64 array *(figure 2)*, only two TQ8033 devices are required and the data passes through only one switch element. For applications with

data rates less than one gigabit per second, a technique known as "fly-by" termination offers good signal fidelity with the minimum number of components. To implement, both the input signal pairs (true and complement) are routed to both devices and then to the termination network at the end of the signal trace with the minimum number of trace discontinuities.

To accomplish this, route the trace from the source device to the first TQ8033 input pad and then continue the signal trace from the input pads to the next device, and finally to the termination network.

For applications at data rates above one gigabit per second, it is recommended to use a fan-out buffer to drive each TQ8033 input as shown in *figure 3*.

As with any high speed interconnect, careful attention to the impedance of the signal traces is very important.

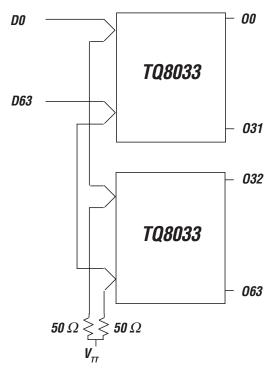


Figure 2. 64x64 array with "fly-by" termination

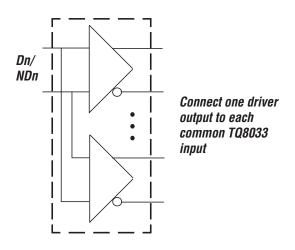


Figure 3. Optional fan-out buffer for array expansion

128x128 Switch Array

To implement a 128x128 switch array, simply extend the design of the 64x64 switch array to include the additional devices. In this configuration, only 12 TQ8033 devices are required and the signal passes through only two switch stages.

Again, use "fly-by" interconnection or a fan-out buffer on input signals to connect multiple devices and the far-end termination network.

Larger switch arrays can be built by simply adding additional TQ8033 devices.

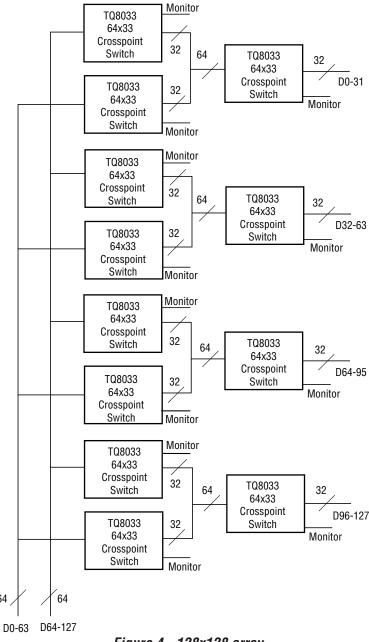


Figure 4. 128x128 array

DATA SHEET

Typical Performance

Data Rate: 1.5Gb/s

Data Pattern: 2²³⁻¹ PRBS

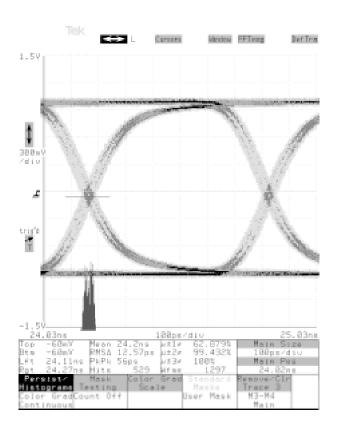
Case Temperature: 0° C

Jitter: 54 ps pk-pk

-1.5V
23.92ns
Top -68ev Nean 24.82ns hslv 69.965t
Bts -68ev PMSA 18.85ps hslv 69.965t
Lft Zdns PkPk 54ps hslv 188t
Por 24.16ns Hits 576 Hfss 1683
Persist Hask Color Grad Standard Histograms lesting
Color GradCount Off User Mask
Continuous

1.54

Wandow FFTmag


Bef Tra

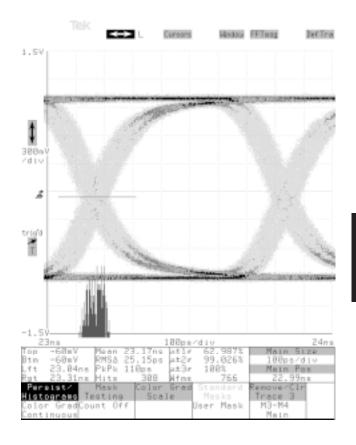
Data Rate: 1.5Gb/s

Data Pattern: 2²³⁻¹ PRBS

Case Temperature: 85° C

Jitter: 56 ps pk-pk

Typical Performance

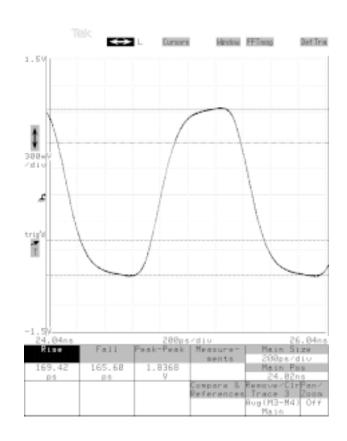

Crosspint Devices: 2 (Cascaded)

Data Rate: 1.5Gb/s

Data Pattern: 2²³⁻¹ PRBS

Case Temperature: 85° C

Jitter: 110 ps pk-pk


Rise and Fall Time

Data Rate: 1.5Gb/s

Data Pattern: 2²³⁻¹ PRBS

Case Temperature: 85° C

Rise/Fall time: 170/166 ps

TQ8033

DATA SHEET

Specifications

Specifications subject to change without notice

Table 1. DC Characteristics — PECL I/O 3,4

Parameter	Notes/Condition	Symbol	Minimum	Nominal	Maximum	Unit
Input common mode range		V_{ICOM}	$V_{DD} - 1500$	_	V _{DD} – 1100	mV
Differential pk-pk input voltage sv	wing (1, 2)	ΔV_{IN}	800	_	2400	mV
Differential pk-pk output voltage	swing (1, 2)	ΔV_{OUT}	1200		2200	mV
Output common mode range		V _{OCOM}	V _{DD} -1500		V _{DD} -1100	mV
Input capacitance		C _{IN}	_	2.6	3.3	pF
ESD breakdown rating		V _{ESD}	1000	_	_	V

Table 2. DC Characteristics—TTL I/O ³

Parameter	Notes/Condition	Symbol	Minimum	Nominal	Maximum	Unit
Input HIGH voltage		V_{IH}	2.0	_	V_{DD}	V
Input LOW voltage		V_{IL}	0	_	0.8	V
Input HIGH current	V _{IH(MAX)}	I _{IH}	_	_	200	uA
Input LOW current	$V_{IL(MIN)}$	I _{IL}	-400	-200	_	uA
Input capacitance		C _{IN}	_	_	3.3	pF
ESD breakdown rating		V _{ESD}	1000	_	_	V

Notes (Tables 1 and 2):

- 1. Defined as $(2 \times (|V_{TRUE} V_{COMP}|))$ 2. $R_{LOAD} = 50$ ohms to $V_{TT} = V_{DD} 2.0V$. 3. Specifications apply over recommended operating ranges.
- 4. Inputs are internally DC-biased to V_{DD} 1.3V with 2.5K Ω Thevenin input impedance for applications requiring AC coupling.

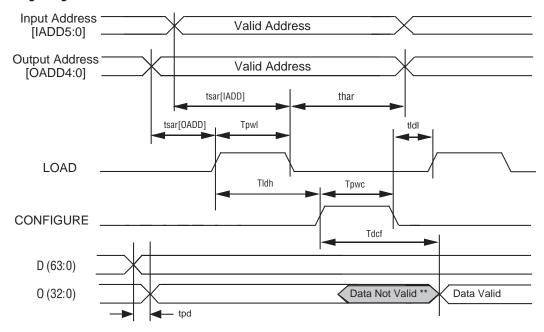


Table 3. AC Characteristics

Parameter	Notes/Condition	Symbol	Minimum	Nominal	Maximum	Unit
Maximum Data Rate/port			1.5			Gb/s
D0-63 minimum pulse width	(1)	T _{pw}	500	_	_	ps
00-32 Rise/Fall time 20-80%	(1)	T _{r/f}	_	_	250	ps
Channel Propagation Delay (mean) (1)	T _{pd}	_	_	2.5	ns
Ch-to-Ch Propagation Delay Skew	(1)	T _{skew}		200	500	ps
00-32 Jitter	(2)	T _{iitter}	_	85	200	ps

Notes: 1. Min. V_{OH} to max V_{OL} levels

Figure 5. Timing Diagram

^{**} Data valid on outputs with unchanged configurations

Table 4. Timing Specifications

Symbol	Parameter	Minimum	Maximum	Unit
t _{sar[OADD]}	Output Address to Load Set-up ti	me 1		ns
t _{sar[IADD]}	Input Address to Load Set-up tim	ie 1		ns
t _{har}	Address to Load Hold Time	2.5		ns
pwl	Min. Load pulse width	2.5		ns
ldh	Load to Configure delay	0		ns
t _{pwc}	Min. Configure pulse width	7		ns
t _{dcf}	Configure to Data Valid		15	ns
t _{idi}	Configure to Load delay	3		ns

^{2.} Crossing of (On) – (NOn) measured with 2^{23} – 1 PRBS, measured over extended time.

Table 5. Absolute Maximum Ratings⁴

Parameter	Condition	Symbol	Minimum	Nominal	Maximum	Unit
Storage Temperature		T _{store}	-65		150	°C
Junction Temperature		T _{CH}	-65		150	°C
Case Temperature w/bias	(1)	T _C	0		100	°C
Supply Voltage	(2)	V_{DD}	0		7.0	V
Voltage to any input	(2)	V _{in}	-0.5		V _{DD} + 0.5	V
Voltage to any output	(2)	V _{out}	-0.5		V _{DD} + 0.5	V
Current to any input	(2)	l _{in}	-1.0		1.0	mA
Current from any output	(2)	l _{out}			40.0	mA
Power Dissipation of output	(3)	P _{out}			50.0	mW

Notes: 1. Tc is measured at case top.

- 2. All voltages are measured with respect to GND (OV) and are continuous.
- 3. Pout = $(V_{DD} V_{out}) \times I_{out}$.
- 4. Absolute maximum ratings, as detailed in this table, are the ratings beyond which the device's performance may be impaired and/or permanent damage to the device may occur.

Table 6. Recommended Operating Conditions ⁴

Symbol	Parameter	Min	Тур	Max	Units	Notes
T _C	Case Operating Temperature	0	_	85	°C	1, 3
V_{DD}	Supply Voltage	4.75	_	5.25	V	
I _{DD}	Current Positive Supply			3	А	
V _{TT}	Load Termination Supply Voltage		V _{DD} – 2.0		V	2
R _{LOAD}	Output Termination Load Resistance		50		Ω	2
$\Theta_{\sf JC}$	Thermal Resistance Junction to Case		2.2		°C/W	

Notes: 1. T_C measured at case top. Use of adequate heatsink is required.

- 2. The V_{TT} and R_{LOAD} combination is subject to maximum output current and power restrictions.
- 3. Contact the Factory for extended temperature range applications.
- 4. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified.

Figure 6. Typical high speed measurement

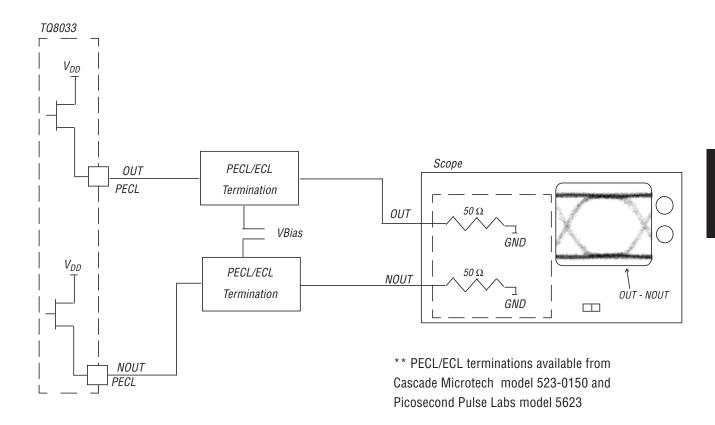
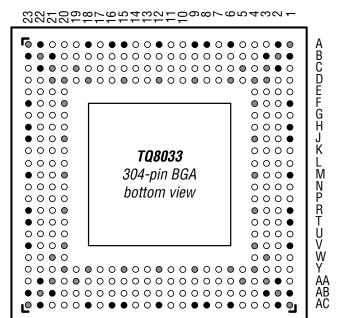



Figure 7. Pinout —Bottom View

GNDVDD

Table 7. Pin Descriptions

Signal	Туре	Grid Ref.	Description			
	Not Connected	B7, C1, C8, T	Γ3, U2, AA16, AB17 - DO NOT CONNECT - LEAVE OPEN			
VDD		A1, A23, B2,	B22, C3, C5, C19, C21, D3, D4, D6, D9, D12, D15, D18, D20, D21, F4, F20			
		J4, J20, M4,	M20, R4, R20, V4, V20, W3, W21, Y4, Y6, Y9, Y12, Y15, Y18, Y20, AA3,			
		AA5, AA19, A	AA21, AB2, AB22, AC1, AC23			
GND		A2, A6, A8, A	A9, A12, A15, A16, A18, A22, B1, B3, B21, B23, C2, C22, F1, F23, H1, H23,			
		J1, J23, M1,	M23, R1, R23, T1, T23, V1, V23, AA2, AA22, AB1, AB3, AB21, AB23, AC2,			
		AC6, AC8, AC	C9, AC12, AC15, AC16, AC18, AC22			
RESETIN	TTL Input	E20	Active high. Reset loads program registers with default input.			
LOAD	TTL Input	C23	Active high, Loads input port data into the selected output port's			
			program registers. Output port definfed by OADD(0:4)			
CONFIGURE	TTL Input	D22	Active high. Transfers the data for all program registers into the			
			second stage configure registers and into the switch core.			
MONITOR_LD	TTL Input	E4	Active High. Directly loads the 33rd output port program register. The			
			OADD(0:5) and LOAD are not used to program this port.			
IADD0	TTL Input	E21	Input address LSB. (D0= 000000, D63= 111111)			
IADD1	TTL Input	D23	Input address.			
IADD2	TTL Input	E22	Input address.			
IADD3	TTL Input	F21	Input address.			
IADD4	TTL Input	G20	G20 Input address.			
IADD5	TTL Input	E23	Input address MSB.			

(Continued on next page)

Table 7. Pin Descriptions (cont.)

Signal	Туре	Grid Ref.	Description
OADD0	TTL Input	F22	Output address LSB. (00=00000, 031= 11111)
OADD1	TTL Input	G21	Output address.
OADD2	TTL Input	H20	Output address.
OADD3	TTL Input	G22	Output address.
OADD4	TTL Input	H21	Output address MSB.
Data Inputs			
D0, ND0	PECL Input	C20, D19	High-speed input and complement.
D1, ND1	PECL Input	A21, B20	High-speed input and complement.
D2, ND2	PECL Input	A20, B19	High-speed input and complement.
D3, ND3	PECL Input	C18, D17	High-speed input and complement.
D4, ND4	PECL Input	A19, B18	High-speed input and complement.
D5, ND5	PECL Input	C17, D16	High-speed input and complement.
D6, ND6	PECL Input	B17, A17	High-speed input and complement.
D7, ND7	PECL Input	C16, B16	High-speed input and complement.
D8, ND8	PECL Input	C15, B15	High-speed input and complement.
D9, ND9	PECL Input	D14, C14	High-speed input and complement.
D10, ND10	PECL Input	B14, A14	High-speed input and complement.
D11, ND11	PECL Input	D13, C13	High-speed input and complement.
D12, ND12	PECL Input	B13, A13	High-speed input and complement.
D13, ND13	PECL Input	C12, B12	High-speed input and complement.
D14, ND14	PECL Input	A11, B11	High-speed input and complement.
D15, ND15	PECL Input	C11, D11	High-speed input and complement.
D16, ND16	PECL Input	A10, B10	High-speed input and complement.
D17, ND17	PECL Input	C10, D10	High-speed input and complement.
D18, ND18	PECL Input	B9, C9	High-speed input and complement.
D19, ND19	PECL Input	B8, A7	High-speed input and complement.
D20, ND20	PECL Input	D8, C7	High-speed input and complement.
D21, ND21	PECL Input	B6, A5	High-speed input and complement.
D22, ND22	PECL Input	D7, C6	High-speed input and complement.
D23, ND23	PECL Input	B5, A4	High-speed input and complement.
D24, ND24	PECL Input	B4, A3	High-speed input and complement.
D25, ND25	PECL Input	D5, C4	High-speed input and complement.
D26, ND26	PECL Input	D2, E3	High-speed input and complement.
D27, ND27	PECL Input	D1, E2	High-speed input and complement.
D28, ND28	PECL Input	F3, G4	High-speed input and complement.
D29, ND29	PECL Input	E1, F2	High-speed input and complement.
D30, ND30	PECL Input	G3, H4	High-speed input and complement.
D31, ND31	PECL Input	G2, G1	High-speed input and complement.

(Continued on next page)

Table 7. Pin Descriptions (cont.)

Signal	Туре	Grid Ref.	Description
Data Inputs (co	nt.)		
D32, ND32	PECL Input	W2, Y1	High-speed input and complement.
D33, ND33	PECL Input	Y2, AA1	High-speed input and complement.
D34, ND34	PECL Input	W4, Y3	High-speed input and complement.
D35, ND35	PECL Input	AA4, Y5	High-speed input and complement.
D36, ND36	PECL Input	AC3, AB4	High-speed input and complement.
D37, ND37	PECL Input	AC4, AB5	High-speed input and complement.
D38, ND38	PECL Input	AA6, Y7	High-speed input and complement.
D39, ND39	PECL Input	AC5, AB6	High-speed input and complement.
D40, ND40	PECL Input	AA7, Y8	High-speed input and complement.
D41, ND41	PECL Input	AB7, AC7	High-speed input and complement.
D42, ND42	PECL Input	AA8, AB8	High-speed input and complement.
D43, ND43	PECL Input	AA9, AB9	High-speed input and complement.
D44, ND44	PECL Input	Y10, AA10	High-speed input and complement.
D45, ND45	PECL Input	AB10, AC10	High-speed input and complement.
D46, ND46	PECL Input	Y11, AA11	High-speed input and complement.
D47, ND47	PECL Input	AB11, AC11	High-speed input and complement.
D48, ND48	PECL Input	AA12, AB12	High-speed input and complement.
D49, ND49	PECL Input	AC13, AB13	High-speed input and complement.
D50, ND50	PECL Input	AA13, Y13	High-speed input and complement.
D51, ND51	PECL Input	AC14, AB14	High-speed input and complement.
D52, ND52	PECL Input	AA14, Y14	High-speed input and complement.
D53, ND53	PECL Input	AB15, AA15	High-speed input and complement.
D54, ND54	PECL Input	AB16, AC17	High-speed input and complement.
D55, ND55	PECL Input	Y16, AA17	High-speed input and complement.
D56, ND56	PECL Input	AB18, AC19	High-speed input and complement.
D57, ND57	PECL Input	Y17, AA18	High-speed input and complement.
D58, ND58	PECL Input	AB19, AC20	High-speed input and complement.
D59, ND59	PECL Input	AB20, AC21	High-speed input and complement.
D60, ND60	PECL Input	Y19, AA20	High-speed input and complement.
D61, ND61	PECL Input	Y21, W20	High-speed input and complement.
D62, ND62	PECL Input	AA23, Y22	High-speed input and complement.
D63, ND63	PECL Input	Y23, W22	High-speed input and complement.

(Continued on next page)

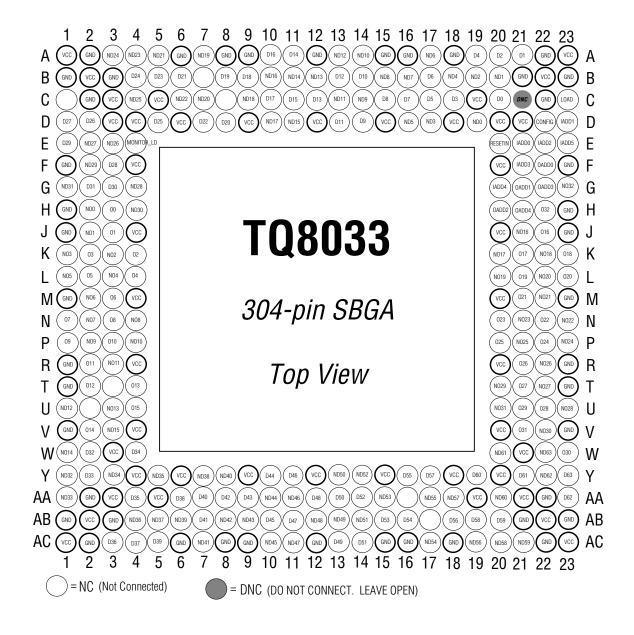


Table 7. Pin Descriptions (cont.)

Signal	Туре	Grid Ref.	Description
Data Outputs			
00,N00	PECL Output	H3,H2	High-speed output and complement.
			O0 and NO0 are addressed by OADD = "00000".
			O31 and NO31 are addressed by OADD = "11111".
01, N01	PECL Output	J3, J2	High-speed output and complement.
02, NO2	PECL Output	K4, K3	High-speed output and complement.
03, N03	PECL Output	K2, K1	High-speed output and complement.
04, N04	PECL Output	L4, L3	High-speed output and complement.
05, N05	PECL Output	L2, L1	High-speed output and complement.
06, N06	PECL Output	M3, M2	High-speed output and complement.
07, N07	PECL Output	N1, N2	High-speed output and complement.
08, N08	PECL Output	N3, N4	High-speed output and complement.
09, N09	PECL Output	P1, P2	High-speed output and complement.
010, N010	PECL Output	P3, P4	High-speed output and complement.
011, N011	PECL Output	R2, R3	High-speed output and complement.
012, N012	PECL Output	T2, U1	High-speed output and complement.
013, N013	PECL Output	T4, U3	High-speed output and complement.
014, N014	PECL Output	V2, W1	High-speed output and complement.
015, N014	PECL Output	U4, V3	High-speed output and complement.
016, N016	PECL Output	J22, J21	High-speed output and complement.
017, N017	PECL Output	K21, K20	High-speed output and complement.
018, N018	PECL Output	K23, K22	High-speed output and complement.
019, N019	PECL Output	L21, L20	High-speed output and complement.
020, NO20	PECL Output	L23, L22	High-speed output and complement.
021, N021	PECL Output	M21, M22	High-speed output and complement.
022, N022	PECL Output	N22, N23	High-speed output and complement.
023, N023	PECL Output	N20, N21	High-speed output and complement.
024, NO24	PECL Output	P22, P23	High-speed output and complement.
025, NO25	PECL Output	P20, P21	High-speed output and complement.
026, NO26	PECL Output	R21, R22	High-speed output and complement.
027, NO27	PECL Output	T21, T22	High-speed output and complement.
028, N028	PECL Output	U22, U23	High-speed output and complement.
029, N029	PECL Output	U21, T20	High-speed output and complement.
030, N030	PECL Output	W23, V22	High-speed output and complement.
031, N031	PECL Output	V21, U20	High-speed output and complement.
032, N032	PECL Output	H22, G23	High-speed monitor output and complement.

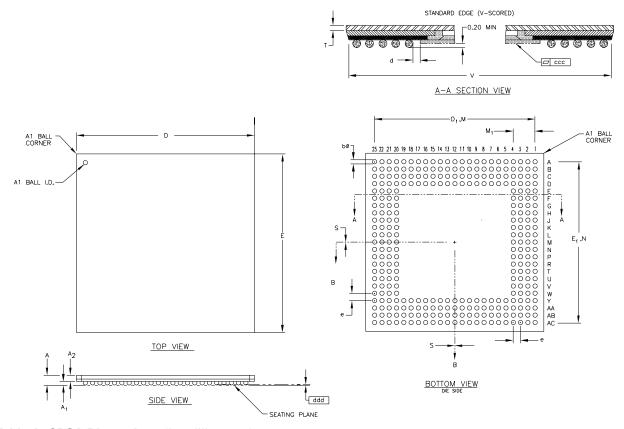


Figure 8. Pin assignment - Top view

Figure 9. SBGA Mechanical Dimensions

Table 8. SBGA Dimensions (in millimeters)

Symbol	Parameter	Min.	Nom.	Мах.	
А	Overall thickness	_	_	1.70	
A ₁	Ball Height	0.50	0.60	0.70	
A ₂	Body thickness	0.85	0.91	1.00	
D	Body size	_	31.00	_	
D ₁	Ball footprint	27.84	27.94	28.04	
E	Body size	_	31.00	_	
E ₁	Ball footprint	27.84	27.94	28.04	
M,N	Ball Matrix		23 x 23		
M1	Number of Rows		4		
b	Ball diameter	0.60	0.75	0.90	
d	Distance encapsulation to balls	0.5	_	_	
е	Ball pitch		1.27		
ddd	Coplanarity	0.15	0.30	0.35	
CCC	Encapsulation height	_	_	0.20	
T	Metal back thickness	0.050	0.125	0.175	
S	Solder ball placement	_	0.00	_	
	PCB pad size	_	0.63	_	

TQ8033

DATA SHEET

Thermal Management

Most applications will require the use of a heatsink or other thermal management system in order to keep the package case temperature within the recommended operation limits. As long as the package case temperature does not exceed 85 degrees C, the die temperature will remain well within TriQuint's requirements for reliability.

Selection of a thermal management device is very dependent on the system mechanical and environmental constrains. Several vendors of heatsink and other thermal management systems support the TQ8033's thermally enhanced Ball Grid Array package. These vendors will work with you to evaluate the system requirements and recommend the best solution.

Heat Sink Vendors

Aavid Thermal Technologies One Kool Path P.O. Box 400 Laconia, NH 03247 603-528-3400

Sumitomo Metal (SMI) 2953 Bunker Hill Lane Santa Clara, CA 95054 408-982-0990

Wakefield Engineering, Inc. 60 Audubon Road Wakefield, MA 01880 617-345-5900

Ordering Information

TQ8033

1.5 Gbit/sec 64x33 Crosspoint Switch

Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000 Email: sales@tqs.com Fax: (503) 615-8900

For technical questions and additional information on specific applications:

Email: applications@tgs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.

Copyright © 1998 TriQuint Semiconductor, Inc. All rights reserved.

Revision 1.0.A November 1999

