

6 - 18 GHz High Power Amplifier

TGA9092-EPU

Key Features and Performance

- Dual Channel Power Amplifier
- 0.25um pHEMT Technology
- 6-18 GHz Frequency Range
- 2.8 W/Channel Midband Pout
- 5.6 W Pout Combined
- 25 dB Nominal Gain
- Balanced In/Out for Low VSWR
- 8V @ 1.2A per Channel Bias

Typical Measured Small Signal Gain

Typical Measured Pout (RF Probe)

Primary Applications

- X-Ku band Power
- Point-to-Point Radio
- VSAT

Chip Dimensions 4.32mm x 5.64mm x 0.100mm

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

1)

Advance Product Information

Table I RECOMMENDED MAXIMUM RATINGS

Symbol	Parameter	Value	Notes
\mathbf{V}^+	Positive Supply Voltage	9 V	
I^+	Positive Supply Current	3.5 A	<u>3</u> /
PD	Power Dissipation	25 Watts	
P _{IN}	Input Continuous Wave Power	25 dBm	
T _{CH}	Operating Channel Temperature	150 °C	<u>1</u> /, <u>2</u> /
T _M	Mounting Temperature (30 seconds)	320 °C	
T _{STG}	Storage Temperature	-65 °C to 150 °C	

- <u>1/</u> These ratings apply to each individual FET
- 2/ Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.
- $\underline{3}$ / Total current for both channels

Table IIDC PROBE TESTS $(T_A = 25 \ ^{\circ}C \pm 5^{\circ}C)$

Symbol	Parameter	Minimum	Maximum	Value
V _{P1-14}	Pinch-off Voltage	-1.5	-0.5	V
BV _{GS1}	Breakdown Voltage gate-source	-30	-8	V
BV _{GD1-3}	Breakdown Voltage gate-drain	-30	-8	V

Table III
ON-WAFER RF PROBE CHARACTERISTICS
$(T_A = 25 \text{ °C} \pm 5 \text{ °C})$

Symbol	Parameter	Test Condition	Limit			Units
		Vd=8V, Id=800mA				
			Min	Nom	Max	
G _p	Small-signal	F = 6 to 18 GHz	21	25	31	dB
	Power Gain					
P _{3dB}	Output Power	F = 6 to 9 GHz	30	32	-	dBm
	@ 3dB gain	F = 10 to 17 GHz	33	34	-	
	compression	F = 18 Ghz	30	33	-	
PAE	Power Added	F = 6 to 18 GHz	12	25	-	%
	Efficiency					

Note: RF probe data taken at 1GHz steps

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

Advance Product Information

TriQuint Semiconductor Texas : Phone (972)994 8465 Fax (972)994 5804 Web: www.triquint.com

Advance Product Information

Chip Assembly and Bonding Diagram

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300 solder
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200 C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.