TriQuint Semiconductor Texas : (972)994 8465 Fax (972)994 8504 Web: www.triquint.com

η

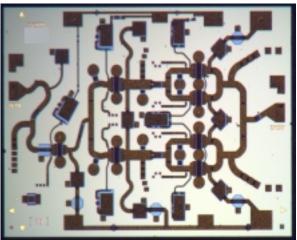
Product Datasheet

TGA9070-SCC

The TriQuint TGA9070-SCC is a three stage HPA MMIC design using TriQuint's proven 0.25 um Power pHEMT process to support a variety of millimeter wave applications including point-to-point digital radio, LMDS/LMCS and Ka-band satellite spacecraft and ground terminals.

The three stage design consists of a 400 um input device driving a pair of 600 um interstage devices followed by four 600 um output devices.

The TGA9070 provides greater than 1W of output power across 23-29 GHz with a typical PAE of 35%. Typical small signal gain is 23 dB.


The TGA9070 requires minimum off-chip components. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in chip form.

Key Features and Performance

- 0.25um pHEMT Technology
- 23 GHz 29 GHz Frequency Range
- Nominal 1 Watt (28GHz) @ P1dB
- Nominal Gain of 23 dB
- Bias 7V @ 400 mA
- Chip Dimensions 4.1mm x 3.0mm

Primary Applications

- LMDS
- Point-to-Point Radio

23 - 29 GHz High Power Amplifier

TABLE I RECOMMENDED MAXIMUM RATINGS

SYMBOL	PARAMETER	VALUE	NOTES
\mathbf{V}^+	POSITIVE SUPPLY VOLTAGE	8 V	
\mathbf{I}^+	POSITIVE SUPPLY CURRENT	1 A	<u>1</u> /
P _D	POWER DISSIPATION	8 W	
P _{IN}	INPUT CONTINUOUS WAVE POWER	20dBm	
T _{CH}	OPERATING CHANNEL TEMPERATURE	150 °C	<u>2/3/</u>
T _M	MOUNTING TEMPERATURE (30 SECONDS)	320 °C	
T _{STG}	STORAGE TEMPERATURE	-65 to 150 ⁰ C	

 $\underline{1}$ Total current for all 3 stages

2/ Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

 $\underline{3}$ / These ratings apply to each individual FET

NOTES	SYMBOL	TEST CONDITIONS 3/	LIMITS		UNITS
	<u>2</u> /		MIN	MAX	
	I _{DSS1}	STD	40	188	mA
<u>1</u> /	$ \mathbf{V}_{P1} $	STD	0.5	1.5	v
<u>1</u> /	$ V_{P2} $	STD	0.5	1.5	V
<u>1</u> /	V _{P3}	STD	0.5	1.5	V
<u>1</u> /	$ V_{P4} $	STD	0.5	1.5	v
<u>1</u> /	V _{P5}	STD	0.5	1.5	v
<u>1</u> /	V _{BVGD1-5}	STD	12	30	V
<u>1</u> /	V _{BVGS1}	STD	12	30	V

TABLE II DC PROBE TESTS (100%) $(T_A = 25 \text{ °C} \pm 5 \text{ °C})$

 $\underline{1}$ V_P, V_{BVGD}, and V_{BVGS} are negative

2/ Subscripts are referred to Q1, Q2, Q3, Q4, Q5 accordingly.

 $\underline{3}/$ The measurement conditions are subject to change at the manufacture's discretion (with appropriate notification to the buyer).

STD - Standard Test Conditions (see Table III for definitions)

2

3

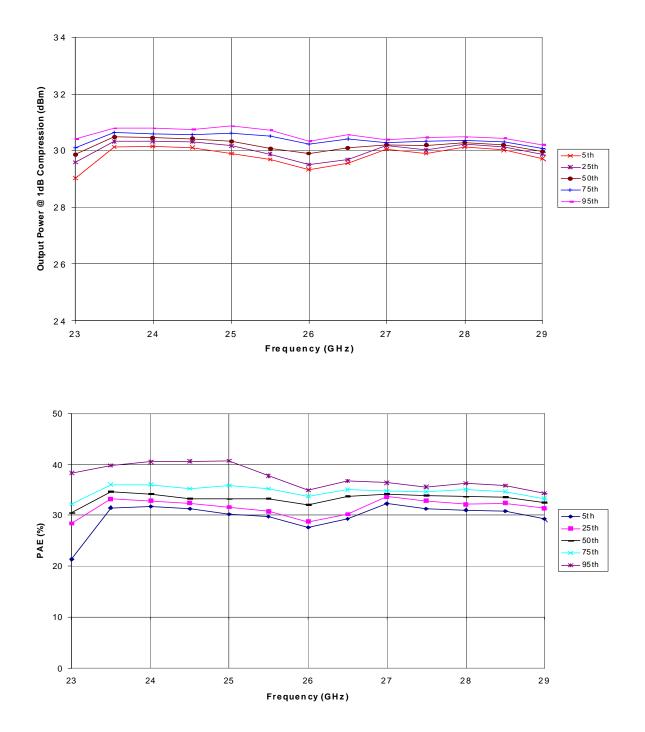
TABLE IV ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C \pm 5^{\circ}C)$ $V_d = 6V, I_d = 400 \text{ mA}$

NOTE	TEST	MEASUREMENT CONDITIONS	VALUE		UNITS	
		<u>1</u> /	MIN	ТҮР	MAX	
	POWER OUTPUT AT 1 dB GAIN	F = 23 - 27 GHz	28.5	30		dBm
<u>2</u> /		F = 28 GHz	29	30.5		dBm
	COMPRESSION	F = 29 GHz	28.5	30		dBm
	POWER ADDED EFFICIENCY	F = 23 – 29 GHz		35		%
	SMALL-SIGNAL GAIN MAGNITUDE	F = 23 GHz	19	21	26	dB
		F = 24 - 28 GHz	20	23	28	dB
		F = 29 GHz	19	21	26	dB
	INPUT RETURN LOSS MAGNITUDE	F = 23 - 29 GHz		-10		dB
	OUTPUT RETURN LOSS MAGNITUDE	F = 23 – 29 GHz		-10		dB

 $\underline{1}$ / RF Probe data is taken at 1 GHz steps

 $\underline{2}/$ $\Delta P/\Delta T$ typically $-0.02 dB/^{\circ}C$

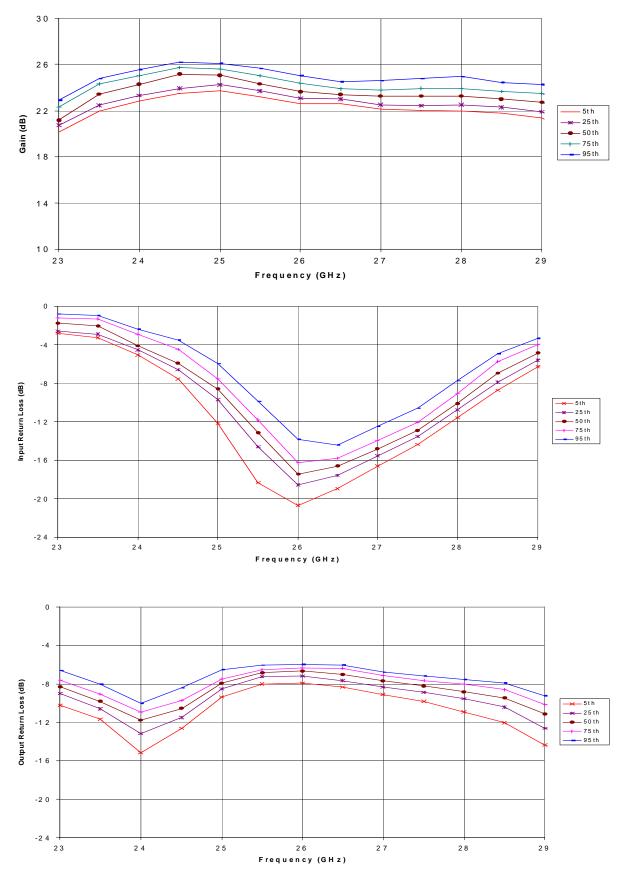
TABLE V RELIABILITY DATA


PARAMETER	BIAS CONDITIONS		P _{DISS}	$R_{\theta JC}$	T _{CH}	MTTF
	$V_{\rm D}(V)$	I _D (mA)	(W)	(C/W)	(°C)	(HRS)
$R_{\theta JC}$ Thermal resistance	6	400	2.4	22.08	123	> 2 E6
(channel to backside)	7	400	2.8	22.5	133	>1 E6

Note: Assumes eutectic attach using 80/20 AuSn mounted to a 10mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

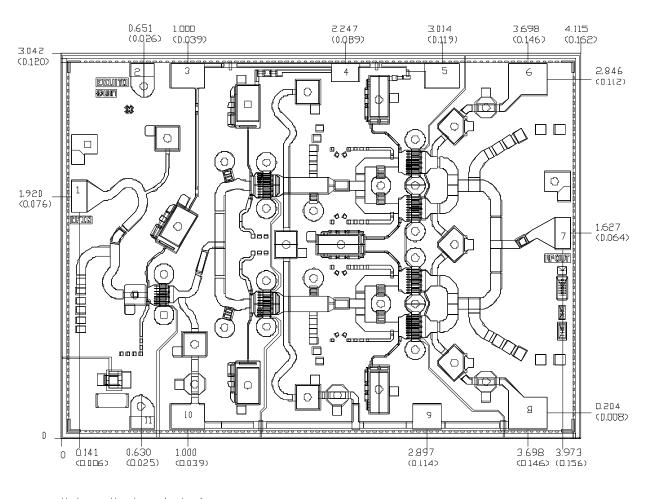
Product Datasheet

Statistical Performance Summary



4

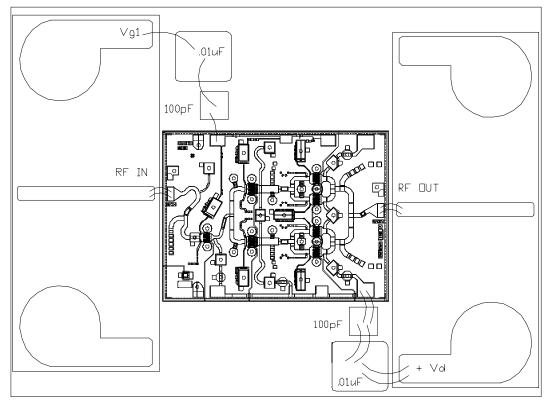
Product Datasheet



Statistical Performance Summary

(5)

Mechanical Characteristics


Units: millineters (inches) Thickness: 0.1016 (0.004) (reference only) Chip edge to bond pad dimensions are shown to center of bond pad. Ehip size tolerance: +/- 0.0508 (0.002)

Bond Pad #1 (RF Input)	0.120 × 0.249	(0.D05 x 0.010)
Bond Pad #2 (Gnd)	D.190 × 0.100	
Bond Pad #3 (Vg1)	D.270 × D.195	(0.D11 × 0.DDB)
Bond Pad #4 (Vg2)	D.220 × D.144	(0.D09 x 0.006)
Bond Pad #5 (Vg3)	D.270 x 0.195	(0.D11 × 0.DDB)
Bond Pad #6 & #8 (Vd3)	0.306 × 0.250	(0.D12 × 0.O10)
Band Pad #7 (RF Output)	0.120 × 0.249	(0.005 × 0.010)
Bond Pad #9 (Vd2)	D.220 x D.195	(BDD,0 x 0,008)
Bond Pad #10 (∨d1)	D.270 x D.195	(0.D11 × 0.DDB)
Bond Pad #11 (Gnd)	D.190 × 0.100	(0.D08 × 0.004>

6

Product Datasheet

Chip Assembly and Bonding Diagram

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300°C
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200°C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.