TE200R THRU TE208R

GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 2.0 Amperes

FEATURES

- Plastic package has Underwriters Laboratory
 Flammability Classification 94V-O Utilizing
 Flame Retardant Epoxy Molding Compound
- Glass passivated junction in DO-15 package
- 2.0 ampere operation at T_A=55 with no thermal runaway
- Exceeds environmental standards of MIL-S-19500/228
- Fast switching for high efficiency

MECHANICAL DATA

Case: Molded plastic, DO-15

Terminals: axial leads, solderable per MIL-STD-202,

Method 208

Polarity: Band denotes cathode

Mounting Position: Any

Weight: 0.015 ounce, 0.4 gram

(7.6) .300 (5.8) .230 .104 (2.6) MIN (25.4) .104 (2.6)

DO-15

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

	TE200R	TE201R	TE202R	TE204R	TE206R	TE208R	UNITS
Peak Reverse Voltage, Repetitive; V _{RM}	50	100	200	400	600	800	V
Maximum RMS Voltage	35	70	140	280	420	560	V
DC Reverse Voltage; V _R	50	100	200	400	600	800	V
Average Forward Current, IO @ T _A =55 3.8"lead length 60 Hz, resistive or inductive load	2.0						Α
Peak Forward Surge Current, I _{FM} (surge) 8.3msec. single half sine wave superimposed on rated	70						А
load(JECEC method)							
Maximum Forward Voltage V _F @2.0A, 25	1.3						V
Maximum Reverse Current, @Rated T _a =25	5.0						Α
Reverse Voltage T _a =100	2000						
Typical Junction capacitance (Note 1) CJ	35						₽F
Typical Thermal Resistance (Note 2) R JA	22						/W
Reverse Recovery Time I _F =.5A, I _R =1A, Irr=.25A	150	150	150	150	250	500	ns
Operating and Storage Temperature Range	-55 to +150						

NOTES:

- 1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC
- 2. Thermal resistance from junction to ambient at 0.375"(9.5mm) lead length P.C.B. mounted

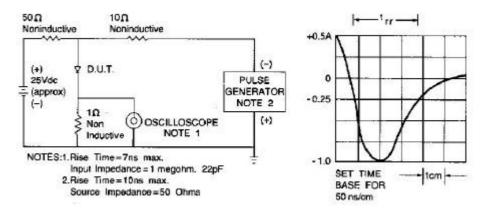
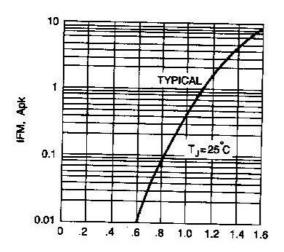



Fig. 1-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

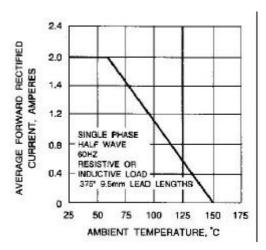


Fig. 2- FORWARD CHARACTERISTICS

Fig. 3-FORWARD CURRENT DERATING CURVE

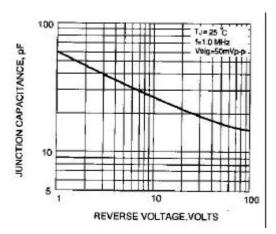


Fig. 4-TYPICAL JUNCTION CAPACITANCE

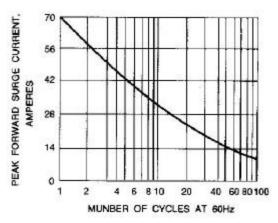


Fig. 5-PEAK FORWARD SURGE CURRENT