3-MEMORY TONE/PULSE DIALER WITH RTC AND LCD DISPLAY FUNCTIONS

GENERAL DESCRIPTION

The W91560DN series ICs are Si-gate CMOS ICs that provide the signals needed for either pulse or tone dialing. They feature 3 number memories and a $12 / 16$-digit LCD driver for displaying telephone numbers and calling time. A real time clock is included to display the time of day. The W91560DN series is fabricated using CMOS technology and thus provide good performance in low voltage, low power applications.

FEATURES

- One by 32 digits for redial
- Three by 32 digits for one-touch direct repertory memory
- Uses 5×6 keyboard
- Pause, Pulse-to-tone (${ }^{*} / \mathrm{T}$) can be stored as a digit in memory
- Flash can be stored as a digit in memory when in store mode
- Minimum tone output duration: 87 mS (81 mS for W91564DNF and W91565DNF)
- Minimum intertone pause: 87 mS
- Tone/Pulse mode pin selectable
- Make/Break ratio pin selectable
- Dialing rate: 10 ppS
- Pause time: 3.6 Sec. (2.0 Sec. for W91564DNF and W91565DNF)
- Flash break time ($73 \mathrm{mS}, 100 \mathrm{mS}, 300 \mathrm{mS}$ or 600 mS) selectable by keypad
- Built-in 12 or 16 -digit LCD driver ($1 / 4$ duty, $1 / 3$ bias) selectable by mask option
- Built-in calling timer from [00:00] to [59:59]
- Memory check function
- On-chip power-on reset and clear LCD
- Uses 3.579545 MHz TV quartz crystal or ceramic resonator
- Uses 32768 Hz crystal as RTC frequency base
- Switchable 24 -hour clock or 12 -hour clock with p.m. mode by keypad
- 0 or 9 dialing inhibition pin for PABX systems or long distance dialing lock out
- On-hook debounce: 150 mS in normal mode and 20 mS in lock mode
- Off-hook delay 300 mS in lock mode ($\overline{\mathrm{DP}}$ will keep low for 300 mS while off hook except the first off hook after power on reset that $\overline{\mathrm{DP}}$ will keep high for 100 mS then go low for 200 mS)
- First key-in delay: 300 mS in lock mode
- Mixed dialing allowed
- Packaged in 64-pin plastic QFP with RTC
- The functions of the different dialers in the W91560DN series are shown in following table:

Preliminary W91560DN SERIES

TYPE NO.	LCD DIGITS	LOCK	HOLD	PAUSE TIME
W91560DNF	16	---	Yes	3.6 Sec.
W91561DLNF	16	Yes	---	
W91562DNF	12	---	Yes	
W91563DLNF	12	Yes	---	
W91564DNF	16	---	Yes	2.0 Sec.
W91565DNF	12	---	Yes	
W91560DNH	16	Yes	Yes	3.6 Sec.
W91562DNH	12	Yes	Yes	

Note: W91564DNF/W91565DNF is only for the French market. The pause time will not be added when in pulse-to-tone function mode.

PIN CONFIGURATION

Preliminary W91560DN SERIES

PIN DESCRIPTION

SYM.	PIN NO.	I/O	FUNCTION
Row, Column Inputs	$\begin{aligned} & \hline 18-21, \\ & 13-17 \end{aligned}$	1	The keyboard inputs may be used with either the standard 5×6 keyboard, an inexpensive single contact (form A) keyboard or electronic input. A valid key entry is defined by a single row being connected to a single column.
$\begin{aligned} & \mathrm{XT} 1, \\ & \overline{\mathrm{XT} 1} \end{aligned}$	22, 23	I, O	A built-in inverter provides oscillation with an inexpensive 3.579545 MHz crystal or ceramic resonater. The oscillator ceases when a keypad input is not sensed after the chip is enabled and dialing is finished. The crystal frequency deviation is $\pm 0.02 \%$.
$\frac{\mathrm{T} / \mathrm{P}}{\mathrm{MUTE}}$	8	0	The T/P $\overline{\text { MUTE }}$ is a conventional CMOS N-channel open drain output. The output transistor is switched on low level during the dialing sequence (both pulse and tone mode), one-key redial break and flash break. Otherwise, it is switched off.
H/P MUTE	9 (W91560DNF W91562DNF W91564DNF W91565DNF only)	0	The H/P MUTE is a conventional CMOS inverter output, During pulse dialing, one-key redial break, flash break and hold functions, this pin will output an active high. It remains in a low state at all other times.
LOCK	9 (W91561DLNF W91563DLNF only)	1	The LOCK pin is used to prevent " 0 " or " 9 " dialing under PABX system long distance call control. When the first key input after reset is " 0 " or " 9 ", all the key inputs, including the " 0 " or " 9 " key, become invalid, and the chip generates no output. The telephone is reinitialized by a reset. The following table describes the functions of the LOCK pin:
HKS	24	1	Hook switch input. $\overline{\text { HKS }}=$ VDD or floating: On-hook state. Chip in sleeping mode, no operation. $\overline{\text { HKS }}=$ Vss: Off-hook state. Chip enable for normal operation. $\overline{\text { HKS }}$ pin is pulled to VDD by internal resistor.

Preliminary W91560DN SERIES

Pin Description, continued

SYM.	PIN NO.	I/O	FUNCTION
MODE	12	I	Pulling the mode pin to Vss places the dialer in tone mode. Pulling the mode pin to Vdd places the dialer in pulse mode (10 $\mathrm{ppS}, \mathrm{M} / \mathrm{B}=2: 3$). Floating the mode pin places the dialer in pulse mode (10 ppS , M/B $=1: 2)$.
$\begin{aligned} & \overline{\mathrm{HFI}}, \\ & \mathrm{HFO} \end{aligned}$	25, 10	I, O	Handfree control pins. A low pulse on the $\overline{\mathrm{HFI}}$ input pin toggles the handfree control state. Status of the handfree control is listed in the following table: $\overline{\mathrm{HFI}}$ pin is pulled to VDD by internal resistor. Detailed timing diagrams are shown in Figure 4(a), 4(b).
$\overline{\mathrm{DP}} / \overline{\mathrm{C} 6}$	11	O	This pin is a CMOS N-channel open drain output. The flash key will cause $\overline{D P}$ to go active in either pulse mode or tone mode. In lock mode, the $\overline{\mathrm{DP}}$ keeps low for 300 mS during off-hook delay time. The timing diagram is shown as Figure 1(a), 1(b), 1(c), 1(d).
DTMF	6	O	In pulse mode, this pin remains in low state at all times. In tone mode, it will output a dual or single tone. The detailed timing diagram for tone mode is shown in Figure 2(a), 2(b), 2(c), 2(d).
VLCD	29	O	Power supply pin for LCD driver. A $0.1 \mu \mathrm{~F}$ capacitor is connected between VLCD and Vss.

Preliminary W91560DN SERIES

Electronics Corp.

Pin Description, continued

SYM.	PIN NO.	I/O	FUNCTION
CP, CN	31,32	I	CP is the voltage control capacitor positive pin. CN is the voltage control capacitor negative pin. A 0.1μ F capacitor is connected between these two pins.
COM1 to COM4	$33-36$	O	COM1 to COM4 are the common signal output terminals for the $1 / 4$ duty LCD.
SEG1 to SEG32	$37-64$ $1-4$	O	SEG1 to SEG32 are the 16-digit segment signal outputs.
XT2,	26,27	I, O	A quartz crystal oscillator provides an RTC frequency time base of 32.768 KHz.
$\overline{\text { XT2 }}$			

Preliminary W91560DN SERIES

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Keyboard Operation

C1	C2	C3	C4	C5	$\overline{\mathrm{DP}} / \overline{\mathrm{Cb}}$
1	2	3	E	M1	HOLD1
4	5	6	F4	M2	HOLD2
7	8	9	CHK	M3	APSET
*/T	0	\#	R/P	RTC/HOUR	SET
F1	F2	F3	OKR	TIM/MIN	

- */T: * in tone mode and $\mathrm{P} \rightarrow \mathrm{T}$ in pulse mode
- E: Store digit
- F1, F2, F3, F4: Flash keys
- M1-M3: One-touch memory
- R/P: Redial and pause function key
- OKR: One-key redial function

Preliminary W91560DN SERIES

Yinbond
 Electronics Corp

- RTC: Real time clock toggle key
- TIM: a. Display last calling time
b. Start and/or stop counting up calling time
- HOUR and MIN: Adjusting time setting keys
- HOLD1, HOLD2: Hold function keys
- APSET: Toggle to set RTC display mode
- SET: Toggle the RTC set function on/off.
- CHK: a. Check dialing number
b. Check dialing time
c. Memory check

Notes: D1, ..., Dn, D1', ..., Dn': 0, ..., 9, */T, \#
Mn : Direct memory location M1, ..., M3

Normal Dialing

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits in normal dialing.

Redialing

a. $\quad R / P \quad \begin{aligned} & \text { key can execute the redial function only after the first key-in is off-hook; otherwise, } \\ & \text { it }\end{aligned}$ will invoke the pause function.
b. The contents of redial memory are D3, ..., Dn.
c. Redial memory can be checked in memory check mode. (

d. If the redialing length oversteps 32 digits, the redialing function will be inhibited.
2.
 pin to go low for 2.2 seconds (break time) with 0.6 seconds of pause time automatically added.
b. If the pulses of the dialed \square D1 to \square have not finished, OKR will be ignored.

Preliminary W91560DN SERIES

digits	\square	\square

c. The one-key redialing function timing diagram is shown in Figure 3.
3.

 or OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\sigma}$,), $\mathrm{D} 1, \mathrm{D} 2, *($ or \#), \ldots, D, Busy, OKR
a. Only D1, D2 will be dialed out for W91564DNF and W91565DNF.
b. D1, D2, * (or \#) , D3, ..., Dn will be dialed out for other dialer.

Number Entry

$\begin{aligned} & \text { OFF } \\ & \text { HOOK } \end{aligned}$	(or	ON HOOK	\&	$\overline{\mathrm{HFI}}{ }^{\circ} \mathrm{L}$),	D1	,	D2	...,	Dn		E	(many times

same as one times), Mn, \quad ON HOOK
D1, D2, ..., Dn will be stored in memory location Mn and will be dialed out.
2

a. D1, D2, ..., Dn will be stored in memory location Mn but will not be dialed out.
b.
 keys can be stored as a digit in memory, in store R / P is the pause function key.
c. The store mode is released after the store function is executed or when the hook switch is depressed.
4.

The redial contents excluding memory dialing will be copied to memory location Mn.
5. The key-in number should not exceed 32 digits. If the number exceeds 32 digits, it will not be stored in memory.

Repertory Dialing

One-touch direct repertory dialing.

Access Pause

Preliminary W91560DN SERIES

1. The first R/P functions as a pause key and the second as a first key-in redial key.
2. The pause function can be stored in memory.
3. The pause function is executed in normal dialing, redialing, or memory dialing.
4. The pause duration time is 3.6 Sec . (2.0 Sec. for W91564DNF and W91565DNF only)
5. The pause function timing diagram is shown in Figure 5.

Pulse- to-tone ($* / T$)

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause (3.6 sec), D1', D2', ..., Dn'
(Pulse)
(Tone)
2. If the mode switch is set to tone mode, then the output signal will be:

D1, D2, ..., Dn, *, D1', D2', ..., Dn'
(Tone)
(Tone)
3. The dialer remains in tone mode after the digits have been dialed out and can be reset to pulse mode only by going on-hook.
4. The pulse-to-tone function timing diagram is shown in Figure 6(a), 6(b).

Flash (F = F1, F2, F3, F4)

1. The dialer will execute flash break time of 600 mS (F1), 300 mS (F2), 73 mS (F3) or $100 \mathrm{mS}(F 4)$ and pause time of 1 S before the next digit (except flash key) is dialed out.
2. The flash key has first priority in normal dialing but an insert flash can be stored into memory when flash is the first digit in memory. In this condition, only one flash key can be released to the user.
a. For the digit sequence E, F1, D1, D2, D3, E, Mn, the sequence stored in Mn will be F1, D1, D2, D3.
b. For the digit sequence E, D1, F1, D2, D3, E, Mn, the sequence stored in Mn will be D1, D2, D3.
c. For the digit sequence F1, D1, D2, D3, E, Mn, the sequence stored in Mn will be D1, D2, D3.
3. The system will return to the initial state after the flash break time is finished.
4. Keyboard functions are inhibited when flash break is being executed.
5. The flash timing daigram is shown in Figure 7.

HOLD Key

Preliminary W91560DN SERIES

1. The hold function is toggled on and off by the HOLD1 or HOLD2 key. When the hold function is toggled on, the hold mark (dot of digit_4) will be lit and all key-ins (except hold keys and icon keys) will be ignored.
2. The following examples show the hold function being toggled on and off:
a.

, HOLD1 (or HOLD2)
b.

), $\overline{\mathrm{HFI}}^{\circ} \mathrm{L}$
c.

d. \qquad $\& \overline{\mathrm{HFI}}{ }^{\sigma} \mathrm{L}$

3. HOLD1 and HOLD2 have the same function in the off-hook state. The difference between HOLD1 and HOLD2 are shown as follows:
a. If OFF HOOK, HOLD1 (or HOLD2), ON HOOK, HOLD1 $\begin{aligned} & \text { is entered, then } \\ & \text { the }\end{aligned}$ dialer will be off-line.

If
 dialer will be on hold.
b. If ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\circ} \mathrm{L}, \mathrm{HOLD1}$ (or HOLD2), HOLD1 is entered, then the dialer will be off-line.
c. If ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\sigma^{\prime}}$, HOLD1 (or HOLD2 $)$, HOLD2 is entered, then the dialer will be on hold.
4. The function timing diagram is shown in Figure 8(a), 8(b), 8(c).

Adjusting Time Setting

1. Only HOUR and MIN keys are valid in RTC set mode.
2. Hours and minutes count forward as long as the HOUR or MIN key is pressed.
3. The on/off function of SET is tolggled, and the dialer is initialized after the SET key is toggled.
4. If the dialing sequence D1, D2, ..., Dn (including flash and pause) has not finished, SET will be ignored.

RTC Display Mode

OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\mathrm{\sigma}} \mathrm{~L}$), RTC

Preliminary W91560DN SERIES

1.The real time clock display mode can be toggled on and off by the RTC key.
2. The icon display will not change when the RTC display mode is entered and set.

APSET

1. In the off-hook state, press the APSET key to toggle the RTC function to 24 -hour clock mode or 12hour clock with p.m. mode.
2. The default mode is a 12 -hour clock with p.m. mode.

Check Key

, ..., etc.)
The contents of redial (or memory) is displayed on the LCD when either R / P or $O K R$ is key in.
TIM

1. If no key is pressed after dialing is finished, the LCD will display a timer after 6 seconds.
2. If the dialing sequence D1, D2, ..., Dn has not finished, TIM will be ignored.
3. The timer will be initialized by the flash and toggle SET key.

Mixed Dialing

1. Definition of mixed dialing:

In mixed dialing, a new sequence may be pressed after the previous sequence has been sent out completely. The following are examples of mixed dialing:

Example 1: Normal dialing + Repertory dialing + ...
Example 2: Repertory dialing + Normal dialing + Repertory dialing $+\ldots$
Example 3: Redialing + Normal dialing + Repertory dialing $+\ldots$
2. There is no limitation on the number of digits and sequences in mixed dialing.
3. The content of mixed dialing may be a combination of normal dialing, memory dialing, or one-key redialing.

ABSOLUTION MAXIMUM RATINGS

Preliminary W91560DN SERIES

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	Vdd-Vss	-0.3 to +7.0	V
Input/Output Voltage	VIL	Vss -0.3	V
	VIH	VdD +0.3	
	VoL	Vss -0.3	
	Voh	VDD +0.3	
Power Dissipation	PD	120	mW
Operating Temperature	Topr	-0.5 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tsta	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

(VDD-VSS $=2.5 \mathrm{~V}$. FOSC $=3.58 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$, all outputs unloaded.)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VDD	-	2.0	-	5.5	V
Operating Current	IOP	Tone, Unloaded	-	0.5	0.7	mA
	Pulse, Unloaded	-	0.4	0.5	ISB	$\overline{\text { HKS }}=0$, Unloaded and no key entry
Standby Current	-	-	15	$\mu \mathrm{~A}$		
Memory Retention Current	IMR	$\overline{\mathrm{HKS}=1}$ VDD $=1.0 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{~A}$
Tone Output Voltage	VTO	Row group RL $=10 \mathrm{~K} \Omega$	130	150	170	mVrms
Pre-emphasis	Col/Row VDD $=2.0$ to 5.5 V	-	2	3	dB	

Preliminary W91560DN SERIES

DC Characteristics, continued

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DTMF Distortion	THD	$\begin{gathered} \mathrm{RL}=10 \mathrm{~K} \Omega \\ \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{gathered}$	-	-30	-23	dB
DTMF Output DC Level	VtDC	VDD $=2.0$ to 5.5 V	1.0	-	3.0	V
DTMF Output Sink Current	ITL	V TO $=0.5 \mathrm{~V}$	0.2	-	-	mA
$\overline{\mathrm{DP}}$ Output Sink Current	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.5	-	-	mA
Common Output Voltage	VCH	$\mathrm{VRTC}=1.5 \mathrm{~V}$	4.2	4.5	4.8	V
	VCL		-	0	0.3	
Common Output Current	ICH	-	-20	-	-	$\mu \mathrm{A}$
	ICL	-	20	-	-	
Segment Output Voltage	VsH	$\mathrm{VRTC}=1.5 \mathrm{~V}$	4.2	4.5	4.8	V
	VSL		-	0	0.3	
Segment Output Current	ISH	-	-5	-	-	$\mu \mathrm{A}$
	ISL	-	5	-	-	
RMS Voltage Across a Segment	VoN	-	2.4	2.6	-	Vrms
	Voff	-	-	1.5	1.7	
Average DC Offset Voltage	Vdc	-	-	-	100	mV
$\overline{\mathrm{HFI}}$ High Voltage	VHFIH	-	0.8 VDD	-	VDD	V
$\overline{\mathrm{HFI}}$ Low Voltage	VhFIL	-	-	-	0.2 VDD	V
T/P MUTE Output Sink Current	ITML	V TMO $=0.5 \mathrm{~V}$	0.5	-	-	mA
H/P MUTE Output Drive Current	IHMH	$\mathrm{VHMO}=2.0 \mathrm{~V}$	0.5	-	-	mA
H/P MUTE Output Sink Current	IHML	$\mathrm{V} \mathrm{HMO}=0.5 \mathrm{~V}$	0.5	-	-	mA
Keypad Input Drive Current	IKD	$\mathrm{VI}=0 \mathrm{~V}$	4	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	IKS	$\mathrm{VI}=2.5 \mathrm{~V}$	200	-	-	$\mu \mathrm{A}$
Keypad Resistance	Rk	-	-	-	5	$\mathrm{K} \Omega$
Control Input Pull Up/Down Resistor	RcIP	$\overline{\mathrm{HFI}}$	100	-	-	$\mathrm{K} \Omega$
$\overline{\text { HKS Input Pull High }}$ Resistor	Rнк	-	-	500	-	$\mathrm{K} \Omega$

Preliminary W91560DN SERIES

AC CHARACTERISTICS

(Vdd-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.58 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$, all outputs unloaded.)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Key-in Debounce	TKID	-	-	20	-	mS
Key Release Debounce	TKRD	-	-	20	-	mS
Off-hook Delay Time	Tofd	-	-	300	-	mS
First Key-in Delay Time	TFKD	-	-	300	-	mS
On-hook Debounce Time	TOHD	Unlock	-	150	-	mS
		Lock	-	20	-	
Pulse Mute Delay	TMD	Mode = VDD	-	40	-	mS
		Mode = Floating	-	33.3	-	
Pre-digit-pause(10 ppS)	TPDP	Mode = VDD	-	40	-	mS
		Mode = Floating	-	33.3	-	
Inter-digit Pause (Auto Dialing)	TIDP	10 ppS	-	800	-	mS
Make/Break Ratio	$\mathrm{M}: \mathrm{B}$	Mode = VDD	-	40:60	-	\%
		Mode = Floating	-	33:67	-	
Tone Output Duration	Tтd	-	-	87	-	mS
		W91564DNF and W91565DNF only	-	81	-	
Inter-tone Pause	TITP	-	-	87	-	mS
Flash Break Time	Tfb	F1	-	600	-	mS
		F2	-	300	-	
		F3	-	73	-	
		F4	-	100		
Flash Pause Time	Tfp	F1, F2, F3, F4	-	1	-	S
Pause Time	Tp	R/P	-	3.6	-	S
		W91564DNF and W91565DNF only		2.0		
One Key Redialing Break Time	Trb	-	-	2.2	-	S
One Key Redialing Pause Time	TRP	-	-	0.6	-	S
LCD Frame Frequency	FLCD	-	-	32	-	Hz

Preliminary W91560DN SERIES

RTC DC Characteristics

(VRTC $=1.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$, Fosc. $=32,768 \mathrm{~Hz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, all outputs unloaded.)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VRTC	-	1.2	1.5	1.8	V
Supply Current	IRTC	No Load	-	2.0	4.0	$\mu \mathrm{~A}$
OSC. Starting Time	Tosc	-	-	-	3	S
OSC. Output Built-in Cap.	Co	$\mathrm{CI}=12.5 \mathrm{pF}$	-	25	-	pF
OSC. in Trimmer Cap.	CTRIM	-	5	-	35	pF
Frequency Stability	$\Delta \mathrm{f} / \mathrm{f}$	VDD-VsS $=1.3$ to 1.6 V	-	-	1	PPM

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100 \mathrm{ohms}, \mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, and Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$
2. Crystal oscillator accuracy directly affects these times.

TIMING WAVEFORMS

Figure 1(a). Normal Dialing Timing Diagram (Pulse Mode without Lock Function)

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 1(b). Normal Dialing Timing Diagram (Pulse Mode with Lock Function)

Figure 1(c). Auto Dialing Timing Diagram (Pulse Mode without Lock Function)

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 1(d). Auto Dialing Timing Diagram (Pulse Mode with Lock Function)

Figure 2(a). Normal Dialing Timing Diagram (Tone Mode without Lock Function)

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 2(b). Normal Dialing Timing Diagram (Tone Mode with Lock Function)

Figure 2(c). Auto Dialing Timing Diagram (Tone Mode without Lock Function)

Preliminary W91560DN SERIES

Electronics Corp

Timing Waveforms, continued

Figure 2(d). Auto Dialing Timing Diagram (Tone Mode with Lock Function)

Figure 3. One-key Redial Timing Diagram

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 4(a). Handfree Timing Diagram (with Lock Function)

Figure 4(b). Handfree Timing Diagram (without Lock Function)

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 5. Pause Function Timing Diagram (Pulse Mode)

Figure 6(a). Pulse-to-tone Timing Diagram

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 6(b). Pulse-to-tone Timing Diagram (W91564DNF and W91565DNF only)

Figure 7. First Priority Flash Timing Diagram

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 8(a). Hold and Handfree Timing Diagram
Note: The HOLD KEY cannot be enabled when the chip is disabled.

Figure 8(b). Hold and Handfree Timing Diagram

Note: The HFI and HOLD KEY inputs will toggle the HFO signal; as soon as either HFI or HOLD KEY is activated, the HFO signal will go high and previous activated inputs will be ignored.

Preliminary W91560DN SERIES

Timing Waveforms, continued

Figure 8(c). Hold and Handfree Timing Diagram

Note: Changing the state of the HKS signal from high to low will initialize the HFO and H/P MUTE signals.

Preliminary W91560DN SERIES

LCD DISPLAY FORMAT

A. Normal Dialing

Dial " 0123456789123456"

and "78"

B. Redialing, Memory Dialing, One Touch Dialing

Press "R/P", "OKR" or "Mn" key (Redial or Mn = "8123456789")

Preliminary W91560DN SERIES

C. Memory Check

 \rightarrow

Off-hook or press "HFI" switch

(M1 = "886P35P770066PP7126", and here pulse mode was selected)

Press "CHK" key

Press "M1" key
(Display 1 to 16 digits)

Press "any key"
(Display 17 to 19 digits)

D. Timer Function

a.

Off-hook or press "HFI" switch

Press "TIM" key
(Display last calling time)

Preliminary W91560DN SERIES

Dial "9375607"

If "9375607" is dialed comlepted, the system will start timer after 6 seconds (Timer will start counting up)
+

\square Cose Cols Coseres)

Press "TIM" key

(Timer will stop)
b.

Off-hook or press " $\overline{\mathrm{HFI}}$ " switch Blinking (here pulse mode was selected)

Dial "9375607"

If "9375607" is dialed completed press "TIM" key
(Timer will start counting up)

Preliminary W91560DN SERIES

Press "CHK" key (M2 = "314P4430256")

Press "M2" key

The system will go back to timer mode after 6 seconds
(Timer count up continuously)

Press "F1", "F2", "F3" or "F4" key
(The timer will stop and the LCD will display a flash mark and flash pattern)

Preliminary W91560DN SERIES

E. RTC Setting Function

On-hook
(Display real time)

Entering "Setting Mode" (Press "SET" key)

(Hour counts forward while the key is depressed)

Adjusting "Minute" (Press "MIN" key)
(Minute counts forward while the key is depressed)

Preliminary W91560DN SERIES

LCD PATTERN FOR DATA

1

2

3

4

5

6

7
8

9
0

\#

$P \rightarrow T$

P

E

CHECK

F LOCK

- Icon1

Icon2
Icon3
Icon4
Icon5
Icon6
Icon7

Notes:

Icon1: Pause
Icon2: The icon will be blinking after power on.
Icon3: Flash
Icon4: Hold
Icon5: Handfree
Icon6: Timer
Icon7: Tone

Preliminary W91560DN SERIES

LCD PANEL PATTERN

(SEG)

BONDING PAD DIAGRAM

Notes:

1. The substrate must be connected to Vss.

Preliminary W91560DN SERIES

2. The chip size is $2940 \times 3630 \mu \mathrm{~m}^{2}$

Pad List

$\begin{aligned} & \text { PAD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PAD } \\ & \text { NAME } \end{aligned}$	PIN NO.	X	Y	$\begin{aligned} & \text { PAD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PAD } \\ & \text { NAME } \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	X	Y
1	SEG29	1	-1335.00	1430.70	33	OCM1	33	1335.00	-1307.90
2	SEG30	2	-1335.00	1294.50	34	COM2	34	1335.00	-1166.10
3	SEG31	3	-1335.00	1158.50	35	COM3	35	1335.00	-1024.30
4	SEG32	4	-1335.00	1022.30	36	COM4	36	1335.00	-882.50
5	VDD	5	-1335.00	883.40	37	SEG1	37	1335.00	-746.30
6	DTMF	6	-1335.00	665.20	38	SEG2	38	1335.00	-607.50
7	Vss	7	-1335.00	515.50	39	SEG3	39	1335.00	-471.30
8	T/P MUTE	8	-1335.00	373.50	40	SEG4	40	1335.00	-335.30
9S-1	H/P MUTE	9*	-1335.00	229.30	41	SEG5	41	1335.00	-199.10
9S-2	LOCK	9*	-1335.00	88.20	42	SEG6	42	1335.00	-63.00
10	HFO	10	-1335.00	-49.80	43	SEG7	43	1335.00	73.00
11	$\overline{\mathrm{DP}} / \overline{\mathrm{C}} 6$	11	-1335.00	-191.80	44	SEG8	44	1335.00	209.20
12	MODE	12	-1335.00	-327.80	45	SEG9	45	1335.00	345.20
13	COL1	13	-1335.00	-467.80	46	SEG10	46	1335.00	481.40
14	COL2	14	-1335.00	-627.20	47	SEG11	47	1335.00	617.40
15	COL3	15	-1335.00	-769.20	48	SEG12	48	1335.00	753.60
16	COL4	16	-1335.00	-928.60	49	SEG13	49	1335.00	889.60
17	COL5	17	-1335.00	-1070.60	50	SEG14	50	1335.00	1102.10
18	ROW1	18	-1335.00	-1226.40	51	SEG15	51	1335.00	1270.80
19	ROW2	19	-1335.00	-1368.40	52	SEG16	52	941.30	1657.50
20	ROW3	20	-1080.40	-1679.90	53	SEG17	53	749.00	1657.50
21	ROW4	21	-841.70	-1679.90	54	SEG18	54	534.80	1657.50
22	XT1	22	-598.40	-1679.90	55	SEG19	55	398.60	1657.50
23	$\overline{\mathrm{XT} 1}$	23	-453.20	-1679.90	56	SEG20	56	262.60	1657.50
24	HKS	24	-307.90	-1679.90	57	SEG21	57	126.40	1657.50
25	HFI	25	-167.90	-1679.90	58	SEG22	58	-9.60	1657.50
26	XT2	26	24.20	-1679.90	59	SEG23	59	-145.80	1657.50
27	XT2	27	188.80	-1679.90	60	SEG24	60	-281.80	1657.50
28	VRTC1	28	326.30	-1679.90	61	SEG25	61	-418.00	1657.50
29	VLCD	29	488.50	-1679.90	62	SEG26	62	-554.00	1657.50
30	VRTC2	30	636.30	-1679.90	63	SEG27	63	-757.70	1657.50
31	CN	31	798.50	-1679.90	64	SEG28	64	-932.00	1657.50
32	CP	32	946.30	-1679.90					

Note: * is bonding option.

Preliminary W91560DN SERIES

Headquarters
No. 4, Creation Rd. III,
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-7197006
Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd. Taipei, Taiwan
TEL: 886-2-7190505
FAX: 886-2-7197502

Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp. Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.
123 Hoi Bun Rd., Kwun Tong, Winbond Microelectronics Corp.
Kowloon, Hong Kong Winbond Systems Lab.
TEL: 852-27513100
FAX: 852-27552064

2730 Orchard Parkway, San Jose,
CA 95134, U.S.A.
TEL: 1-408-9436666
FAX: 1-408-9436668

