128Kx32 SRAM/FLASH MODULE PRELIMINARY*

FEATURES

- Access Times of 25ns (SRAM) and 70, 90 and 120ns (FLASH)
- Packaging:
 - 66-pin, PGAType, 1.385 inch square HIP, Hermetic Ceramic HIP (Package 402)
- 128Kx32 SRAM
- 128Kx32 5V Flash
- Organized as 128Kx32 of SRAM and 128Kx32 of Flash Memory with common Data Bus
- Low Power CMOS
- Commercial, Industrial and Military Temperature Ranges
- TTL Compatible Inputs and Outputs
- Built-in Decoupling Caps and Multiple Ground Pins for Low Noise Operation

TOP VIEW

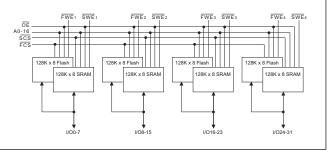
■ Weight - 13 grams typical

FLASH MEMORY FEATURES

- 10,000 Erase/Program Cycles
- Sector Architecture
 - 8 equal size sectors of 16K bytes each
 - Any combination of sectors can be concurrently erased. Also supports full chip erase
- 5 Volt Programming; 5V ± 10% Supply
- Embedded Erase and Program Algorithms
- Hardware Write Protection
- Page Program Operation and Internal Program Control Time.

Note: Programming information available upon request.

FIG. 1 PIN CONFIGURATION FOR WSF128K32-XH2X


1	12	23	34	45	56
○I/O ₈	○FWE ₂	○I/O ₁₅	I/O ₂₄	Vcc 🔾	I/O ₃₁
Ol/O ₉		O1/O14	I/O ₂₅ O 5	SWE ₄	I/O ₃₀ 🔾
○I/O ₁₀	GND	○I/O ₁₃	I/O ₂₆ O	WE ₄	I/O ₂₉
○A ₁₄	OI/O ₁₁	OI/O ₁₂	A7 ()	I/O ₂₇	I/O ₂₈ 🔾
○A ₁₆	○A ₁₀	$\bigcirc \overline{\text{OE}}$	A ₁₂ 🔾	A4 🔾	A1 (
○A ₁₁	○A ₉	ONC	SWE₁ ○	A5 🔾	A ₂
○A ₀	_A ₁₅	$\bigcirc \overline{FWE}_1$	A13 (A6 (A3 (
ONC	Vcc	○ I/O ₇	A8 ()	₩E ₃	I/O ₂₃
○I/O ₀	○FCS	○ I/O ₆	I/O ₁₆ O	SWE ₃	I/O ₂₂
○I/O ₁	$\bigcirc \overline{\text{scs}}$	○ I/O₅	I/O ₁₇	GND 🔾	I/O ₂₁
○I/O ₂	○ I/O₃	○ I/O ₄	I/O ₁₈ 🔾	I/O ₁₉	I/O ₂₀
11	22	33	44	55	66

PIN DESCRIPTION

Data Innuts (Outputs

D0-31	Data Inputs/Outputs
A0-16	Address Inputs
SWE ₁₋₄	SRAM Write Enables
SCS	SRAM Chip Select
ŌĒ	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected
FWE ₁₋₄	Flash Write Enables
FCS	Flash Chip Select

BLOCK DIAGRAM

^{*} This data sheet describes a product under development, not fully characterized, and is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Operating Temperature	TA	-55	+125	°C
Storage Temperature	Тѕтс	-65	+150	°C
Signal Voltage Relative to GND	Vg	-0.5	7.0	V
Junction Temperature	TJ		150	°C
Supply Voltage	Vcc	-0.5	7.0	V

Parameter	
Flash Data Retention	10 years
Flash Endurance (write/erase cycles)	10,000

NOTE:

1. Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	5.5	٧
Input High Voltage	ViH	2.2	Vcc + 0.3	V
Input Low Voltage	VIL	-0.5	+0.8	٧

SRAM TRUTH TABLE

scs	ŌĒ	SWE	Mode	Data I/O	Power
Н	х	Х	Standby	High Z	Standby
L	L	Н	Read	Data Out	Active
L	Н	Н	Read	High Z	Active
L	Х	L	Write	Data In	Active

NOTE:

1. FCS must remain high when SCS is low.

CAPACITANCE $(T_A = +25^{\circ}C)$

Test	Symbol	Condition	Max	Unit
OE Capacitance	COE	VIN = 0V, f = 1.0MHz	80	pF
F/S WE 1-4 Capacitance	CWE	VIN = 0V, f = 1.0MHz	30	pF
F/S CS Capacitance	Ccs	VIN = 0V, f = 1.0MHz	50	pF
Do-31 Capacitance	Cı/o	VIN = 0V, f = 1.0MHz	30	pF
Ao - A16 Capacitance	CAD	VIN = 0V, f = 1.0MHz	80	pF

This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS

 $(Vcc = 5.0V, Vss = 0V, T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$

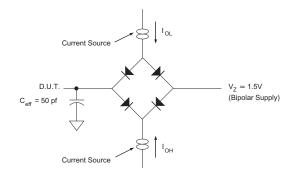
Parameter	Symbol	Conditions	Min	Max	Unit
Input Leakage Current	lu	Vcc = 5.5, Vin = GND to Vcc		10	μA
Output Leakage Current	ILO	SCS = VIH, OE = VIH, VOUT = GND to Vcc		10	μA
SRAM Operating Supply Current x 32 Mode	Іссх32	SCS = VIL, OE = FCS = VIH, f = 5MHz, Vcc = 5.5		670	mA
Standby Current	Isa	FCS = SCS = VIH, OE = VIH, f = 5MHz, Vcc = 5.5		80	mA
SRAM Output Low Voltage	Vol	IoL = 8mA, Vcc = 4.5		0.4	V
SRAM Output High Voltage	Vон	Iон = -4.0mA, Vcc = 4.5	2.4		V
Flash Vcc Active Current for Read (1)	Icc1	FCS = VIL, OE = SCS = VIH		220	mA
Flash Vcc Active Current for Program or Erase (2)	Icc2	FCS = VIL, OE = SCS = VIH		280	mA
Flash Output Low Voltage	Vol	IoL = 8.0mA, Vcc = 4.5		0.45	V
Flash Output High Voltage	Vон1	Iон = -2.5 mA, Vcc = 4.5	0.85 x Vcc		٧
Flash Output High Voltage	Voн2	Іон = -100 μA, Vcc = 4.5	Vcc -0.4		V
Flash Low Vcc Lock Out Voltage	VLKO		3.2		V

NOTES:

- The Icc current listed includes both the DC operating current and the frequency dependent component (@ 5 MHz).
 The frequency component typically is less than 2 mA/MHz, with OE at Viii.
- 2. Icc active while Embedded Algorithm (program or erase) is in progress.
- 3. DC test conditions: VIL = 0.3V, VIH = Vcc 0.3V

SRAM AC CHARACTERISTICS (Vcc = 5.0V, Ta = -55°C to +125°C)

•				
Parameter	Symbol	-2	<u>-25</u>	
Read Cycle		Min	Max	
Read Cycle Time	trc	25		ns
Address Access Time	t AA		25	ns
Output Hold from Address Change	tон	0		ns
Chip Select Access Time	tacs		25	ns
Output Enable to Output Valid	toe		15	ns
Chip Select to Output in Low Z	tcLz1	3		ns
Output Enable to Output in Low Z	toLz1	0		ns
Chip Disable to Output in High Z	tcHz1		12	ns
Output Disable to Output in High Z	tonz1		12	ns

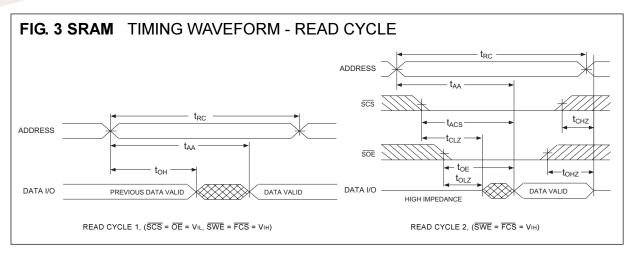

^{1.} This parameter is guaranteed by design but not tested.

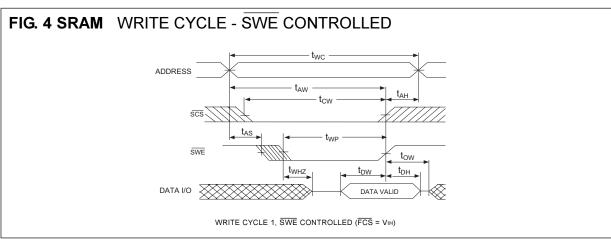
SRAM AC CHARACTERISTICS (Vcc = 5.0V, TA = -55°C TO +125°C)

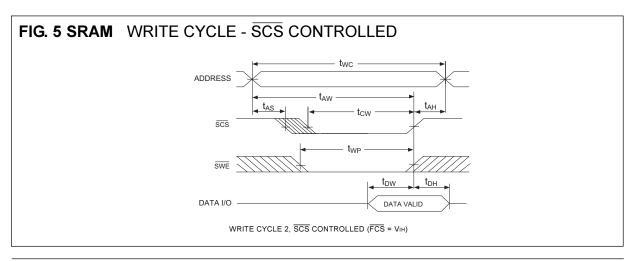
Parameter	Symbol	<u>-2</u>	<u>25</u>	Unit
Write Cycle		Min	Max	
Write Cycle Time	twc	25		ns
Chip Select to End of Write	tcw	20		ns
Address Valid to End of Write	taw	20		ns
Data Valid to End of Write	tow	15		ns
Write Pulse Width	twp	20		ns
Address Setup Time	tas	0		ns
Address Hold Time	tah	0		ns
Output Active from End of Write	tow1	3		ns
Write Enable to Output in High Z	twnz¹		15	ns
Data Hold from Write Time	tон	0		ns

^{1.} This parameter is guaranteed by design but not tested.

FIG. 2 AC TEST CIRCUIT


AC TEST CONDITIONS


Parameter	Тур	Unit
Input Pulse Levels	VIL = 0, VIH = 3.0	V
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	V
Output Timing Reference Level	1.5	V


Notes:
Vz is programmable from -2V to +7V.
lot & lot programmable from 0 to 16mA.

Tester Impedance $Z_0 = 75 \Omega$. Vz is typically the midpoint of VoH and VoL.

Io. & Ionare adjusted to simulate a typical resistive load circuit. ATE tester includes jig capacitance.

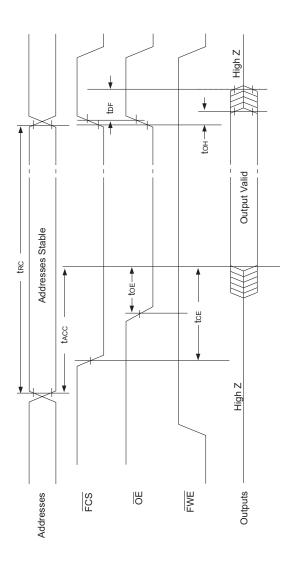
FLASH AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS, FWE CONTROLLED $(Vcc = 5.0V, T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Sym	bol	<u>-70</u>		<u>-90</u>	<u>)</u>	<u>-120</u>		Unit
			Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	twc	70		90		120		ns
Chip Select Setup Time	telwl	tcs	0		0		0		ns
Write Enable Pulse Width	twLwH	twp	35		45		50		ns
Address Setup Time	tavwl	tas	0		0		0		ns
Data Setup Time	tоvwн	tos	30		45		50		ns
Data Hold Time	twndx	tон	0		0		0		ns
Address Hold Time	twlax	tah	45		45		50		ns
Chip Select Hold Time	twheh	tсн	0		0		0		ns
Write Enable Pulse Width High	twhwL	twph	20		20		20		ns
Duration of Byte Programming Operation (min)	twnwh1		14		14		14		μs
Chip and Sector Erase Time	twhwh2		2.2	60	2.2	60	2.2	60	sec
Read Recovery Time Before Write	tghwl		0		0		0		μs
Vcc Set-up Time		tvcs	50		50		50		μs
Chip Programming Time				12.5		12.5		12.5	sec
Output Enable Setup Time		toes	0		0		0		ns
Output Enable Hold Time (1)		toeh	10		10		10		ns

^{1.} For Toggle and Data Polling.

FLASH AC CHARACTERISTICS - READ ONLY OPERATIONS $(Vcc = 5.0V, Ta = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Symbol		<u>-70</u>		<u>-90</u>		<u>-120</u>		Unit
			Min	Max	Min	Max	Min	Max	
Read Cycle Time	tavav	trc	70		90		120		ns
Address Access Time	tavqv	tacc		70		90		120	ns
Chip Select Access Time	tELQV	tce		70		90		120	ns
OE to Output Valid	tgLQV	toe		35		40		50	ns
Chip Select to Output High Z (1)	tenqz	tor		20		25		30	ns
OE High to Output High Z (1)	tвнqz	tor		20		25		30	ns
Output Hold from Address, FCS or OE Change, whichever is first	taxqx	tон	0		0		0	ns	


^{1.} Guaranteed by design, not tested.

FLASH AC CHARACTERISTICS – WRITE/ERASE/PROGRAM OPERATIONS, FCS CONTROLLED (Vcc = 5.0V, Ta = -55°C to +125°C)

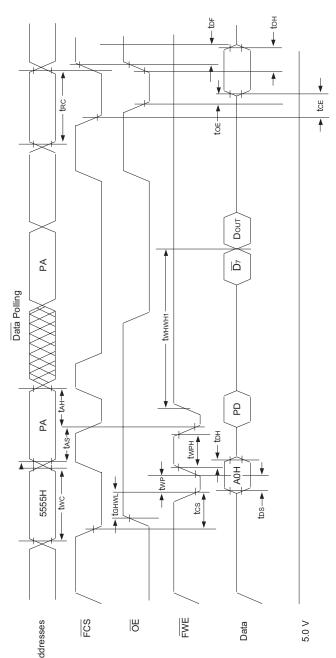
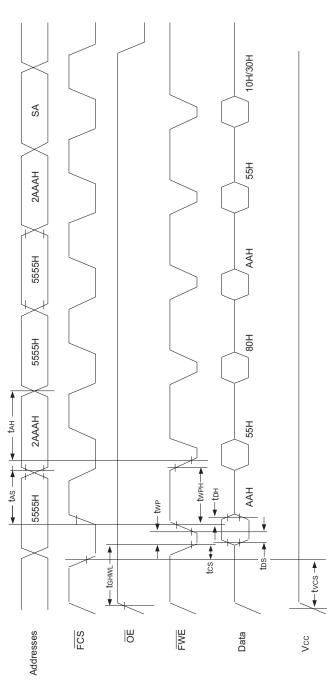

Parameter	Symbol		<u>-70</u>		<u>-90</u>		-120		Unit
			Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	twc	70		90		120		ns
FWE Setup Time	twlel	tws	0		0		0		ns
FCS Pulse Width	teleh	tcp	35		45		50		ns
Address Setup Time	tavel	tas	0		0		0		ns
Data Setup Time	toveh	tos	30		45		50		ns
Data Hold Time	tendx	tон	0		0		0		ns
Address Hold Time	telax	tан	45		45		50		ns
FWE Hold from FWE High	tehwh	twн	0		0		0		ns
FCS Pulse Width High	tehel	tсрн	20		20		20		ns
Duration of Programming Operation	twnwh1		14		14		14		μs
Duration of Erase Operation	twhwh2		2.2	60	2.2	60	2.2	60	sec
Read Recovery before Write	tghel		0		0		0		ns
Chip Programming Time				12.5		12.5		12.5	sec

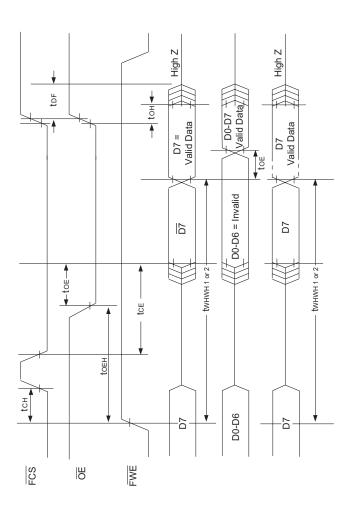
FIG. 6 AC WAVEFORMS FOR FLASH MEMORY READ OPERATIONS

NOTE: SCS = VIH


FIG. 7 WRITE/ERASE/PROGRAM OPERATION, FLASH MEMORY FWE CONTROLLED

NOTES:

- 1. PA is the address of the memory location to be programmed.
- 2. PD is the data to be programmed at byte address.
- 3. $\overline{D_7}$ is the output of the complement of the data written to the device.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles of four bus cycle sequence.
- 6. $\overline{SCS} = V_{IH}$


FIG. 8 AC WAVEFORMS CHIP/SECTOR ERASE OPERATIONS FOR FLASH MEMORY

Notes:

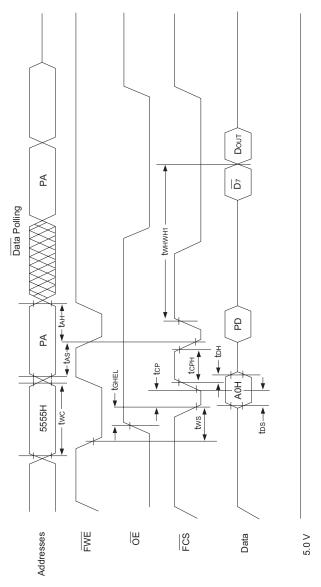
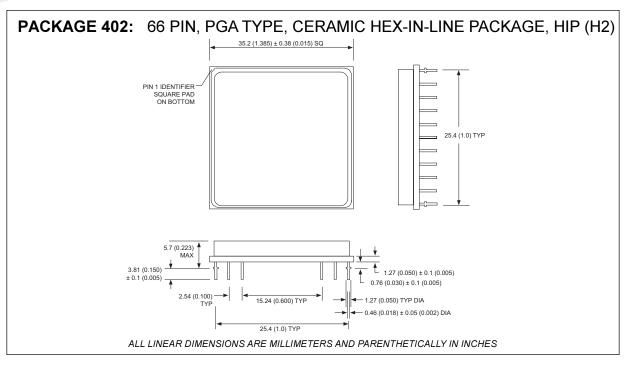
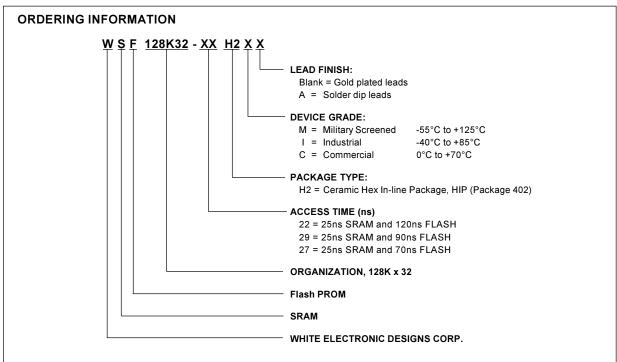

- 1. SA is the sector address for Sector Erase.
- 2. SCS = VIH

FIG. 9 AC WAVEFORMS FOR DATA POLLING DURING EMBEDDED ALGORITHM OPERATIONS FOR FLASH MEMORY


Note: SCS = VIH


FIG. 10 WRITE/ERASE/PROGRAM OPERATION FOR FLASH MEMORY, CS **CONTROLLED**

NOTES:

- 1. PA represents the address of the memory location to be programmed.
- PD represents the data to be programmed at byte address.
- 3. $\overline{D_7}$ is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- 5. Figure indicates the last two bus cycles of a four bus cycle sequence.
- SCS = VIH

