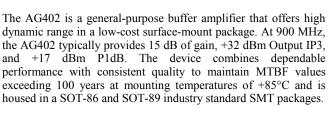
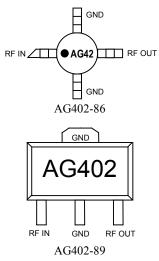


The Communications Edge


Preliminary Product Information

Product Features

- DC 5000MHz
- +17 dBm P1dB at 900MHz
- +32 dBm OIP3 at 900MHz
- 15 dB Gain at 900MHz
- Single Voltage Supply
- SOT-86 or SOT-89 SMT Package
- Internally matched to 50Ω


Product Description

Functional Diagram

The AG402 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, W-CDMA, and UMTS. In addition, the AG402 will work for other various applications within the DC to 5 GHz frequency range such as CATV and fixed wireless.

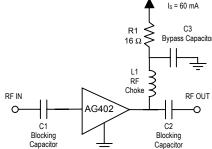
Specifications

Parameters ¹	Units	Min	Тур	Max
Frequency Range	MHz		DC-5000	
S21 - Gain	dB		15	
S11 - Input Return Loss	dB		-15	
S22 - Output Return Loss	dB		-15	
Output P1dB	dBm		+17	
Output IP3	dBm		+32	
Noise Figure	dB		4.3	
Device Voltage	V		5.0	
Device Current	mA		60	

Test conditions unless otherwise noted

1. T = 25°C, Supply Voltage = +6 V, R_{bias} = 16 Ω , Frequency = 900MHz, 50 Ω System.

Colp resured with two tones at an output power of 0 dBm/tone separated by 10MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.


Absolute Maximum Ratings

Parameters	Rating	
Operating Case Temperature	-40 to +85 °C	
Storage Temperature	-40 to +125 °C	
Operation of this device above any of these personators may serve permanent demage		

 $V_{S} = +6 V$

Operation of this device above any of there parameters may cause permanent damage

Application Circuit

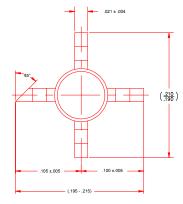
Typical Parameters

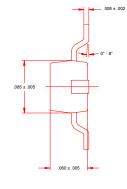
Parameter ¹	Units	Typical		
Frequency	MHz	900	1900	
S21	dB	15	14	
S11	dB	-15	-12	
S22	dB	-25	-20	
Output P1dB	dBm	+17	+16	
Output IP3	dBm	+32	+29	
Noise Figure	dB	4.3	4.5	
Supply Voltage	V	6	6	
Device Current	mA	60	60	
1. Data represents typical performance in an application board with				

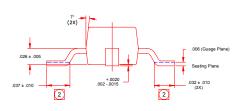
T = 25°C, V_s = +6 V, and R_{bias} = 16 Ω in a 50 Ω system.

Ordering Information

Part No.	Description
AG402-86	InGaP HBT Gain Block SOT-86 Style Package (Available in Tape & Reel)
AG402-89	InGaP HBT Gain Block SOT-89 Style Package (Available in Tape & Reel)
AG402-86PCB AG402-89PCB	Fully Assembled Application Board Fully Assembled Application Board

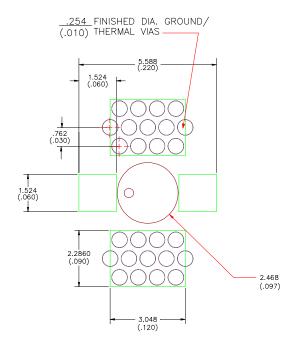

This document contains information on a new product. Specifications and information are subject to change without notice




Preliminary Product Information

AG402-86 Package Information

Outline Drawing



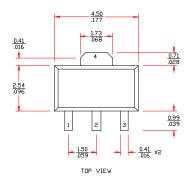
NOTES: 1. DIMENSIONS ARE IN INCHES. 2. THE FOOT LENGTH MEASURING BASED ON GAUGE PLANE METHOD.

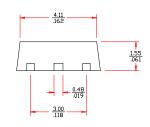
Land Pattern

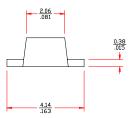
Mounting Configuration Notes

NOTES:

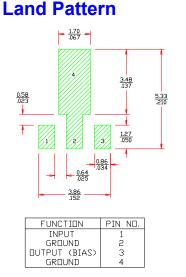
- THERMAL/GROUND VIAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS PART. VIAS SHOULD USE A .013" DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER OF .010".
- 2. ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- 3. MOUNTING SCREWS ARE RECOMMENDED NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK. ENSURE THAT THE THERMAL/GROUND VIAS CONTACT THE HEATSINK.
- 4. DO NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PC BOARD IN THE REGIONS WHERE THE BOARD CONTACTS THE HEATSINK.
- 5. RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 6. USE 1 OZ. COPPER MINIMUM.
- 7. DIMENSIONS ARE IN MILLIMETERS / (INCHES).


This document contains information on a new product. Specifications and information are subject to change without notice

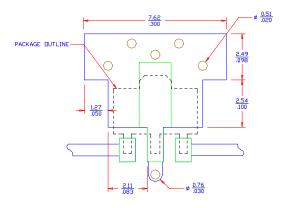

Preliminary Product Information


AG402-89 Package Information

Outline Drawing



Mounting Configuration



Notes: 1. Ground vias are critical for thermal and RF grounding considerations.
2. Two 2-56 screws with washers should be used for thermal grounding to the main chassis.
3. Ground plane on the backside should extend past the holes for the 2-56 screws as a minimum.
4. No soldermask should be applied to the backside where heat sink area contacts the main chassis.
5. Holes for the 2-56 screws should be plated through.
6. Kapput dipartup for the 2-56 screws should be related through.

- 6. Keepout diameter for the 2-56 screw is to allow good thermal

- contact for the screw and washer. 7. Trace width depends on PC board. 8. A minimum of 1 oz. / 1 oz. copper should be used.

This document contains information on a new product. Specifications and information are subject to change without notice

